{"title":"The LptC transmembrane helix undergoes a rigid body movement upon LptB<sub>2</sub>FG cavity collapse.","authors":"Nicholas P Cina, Candice S Klug","doi":"10.1002/pro.70133","DOIUrl":null,"url":null,"abstract":"<p><p>Lipopolysaccharide (LPS) is an essential component of the cellular envelope of Gram-negative bacteria and contributes to antibiotic resistance and pathogenesis. Proper localization of LPS at the outer membrane is facilitated via seven distinct LPS transport (Lpt) proteins that bridge the inner and outer membranes. Mature LPS diffuses into the membrane cavity of the inner membrane ABC transporter LptB<sub>2</sub>FGC through a lateral gate formed by the LptF and LptG transmembrane (TM) helices. The TM helix of LptC intercalates within the LPS entry point and has been shown to regulate the ATPase activity of LptB<sub>2</sub>FG and contribute to thermal stability. Determination of the LptB<sub>2</sub>FGC open state structure revealed the location of the LptC TM helix within the membrane complex. However, in the closed state structure, the LptC TM helix is unresolved, suggesting the helix may be displaced from the lateral gate prior to or upon closure of the cavity. To determine the conformational states of the LptC TM helix in the open and closed LptB<sub>2</sub>FGC conformations, we utilized site-directed spin labeling in combination with both continuous wave electron paramagnetic resonance (EPR) and double electron electron resonance (DEER) spectroscopies to investigate the LptC TM helix and linker region. These data indicate that the LptC TM helix undergoes a rigid body movement away from the central LptB<sub>2</sub>FG cavity upon cavity closure. The findings presented here will support structure-based drug design optimization of recently discovered antibiotics that bind LptB<sub>2</sub>FG and occlude the LptC TM helix from the lateral gate.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 5","pages":"e70133"},"PeriodicalIF":4.5000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12012751/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70133","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lipopolysaccharide (LPS) is an essential component of the cellular envelope of Gram-negative bacteria and contributes to antibiotic resistance and pathogenesis. Proper localization of LPS at the outer membrane is facilitated via seven distinct LPS transport (Lpt) proteins that bridge the inner and outer membranes. Mature LPS diffuses into the membrane cavity of the inner membrane ABC transporter LptB2FGC through a lateral gate formed by the LptF and LptG transmembrane (TM) helices. The TM helix of LptC intercalates within the LPS entry point and has been shown to regulate the ATPase activity of LptB2FG and contribute to thermal stability. Determination of the LptB2FGC open state structure revealed the location of the LptC TM helix within the membrane complex. However, in the closed state structure, the LptC TM helix is unresolved, suggesting the helix may be displaced from the lateral gate prior to or upon closure of the cavity. To determine the conformational states of the LptC TM helix in the open and closed LptB2FGC conformations, we utilized site-directed spin labeling in combination with both continuous wave electron paramagnetic resonance (EPR) and double electron electron resonance (DEER) spectroscopies to investigate the LptC TM helix and linker region. These data indicate that the LptC TM helix undergoes a rigid body movement away from the central LptB2FG cavity upon cavity closure. The findings presented here will support structure-based drug design optimization of recently discovered antibiotics that bind LptB2FG and occlude the LptC TM helix from the lateral gate.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).