{"title":"Subject Modeling-Based Analysis of the Evolution and Intervention Strategies of Major Emerging Infectious Disease Events.","authors":"Haixiang Guo, Tiantian Zhao, Yuzhe Zou, Beijia Zhang, Yuyan Cheng","doi":"10.2147/RMHP.S507704","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Due to the popularity of the Internet and the extensive use of new media, after the occurrence of infectious diseases, the spread of social media information greatly affects the group's opinion and cognition and even the health behaviors they take, thus affecting the spread of infectious diseases. Therefore, this paper studies the event evolution from multiple dimensions.</p><p><strong>Methods: </strong>To address this gap, we developed a three-layer model framework of major infectious disease event evolution based on subject modeling. This framework integrates three key factors-health transmission, perspective interaction, and risk perception-to analyze group perspective evolution, behavioral change, and virus transmission processes. The model's effectiveness was evaluated through simulation and sensitivity analysis. In addition, we conducted an empirical analysis by constructing a social media health transmission effect index system to identify the critical factors affecting health transmission.</p><p><strong>Results: </strong>Simulation results reveal that among the three factors, health transmission has the most significant impact on the evolution of group perspectives during infectious disease events. Moreover, the dynamics of public viewpoint evolution influence individual decisions regarding the adoption of non-pharmacological interventions, which are shown to effectively reduce both the transmission rate of the virus and the peak number of infections.</p><p><strong>Conclusion: </strong>The findings of this study enhance our understanding of the complex mechanisms and evolutionary pathways in infectious disease events. By integrating multiple dimensions of event evolution, the proposed model offers valuable insights for the design of effective countermeasures and strategies in emergency management and response to infectious disease outbreaks.</p>","PeriodicalId":56009,"journal":{"name":"Risk Management and Healthcare Policy","volume":"18 ","pages":"1257-1278"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11998951/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk Management and Healthcare Policy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/RMHP.S507704","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Due to the popularity of the Internet and the extensive use of new media, after the occurrence of infectious diseases, the spread of social media information greatly affects the group's opinion and cognition and even the health behaviors they take, thus affecting the spread of infectious diseases. Therefore, this paper studies the event evolution from multiple dimensions.
Methods: To address this gap, we developed a three-layer model framework of major infectious disease event evolution based on subject modeling. This framework integrates three key factors-health transmission, perspective interaction, and risk perception-to analyze group perspective evolution, behavioral change, and virus transmission processes. The model's effectiveness was evaluated through simulation and sensitivity analysis. In addition, we conducted an empirical analysis by constructing a social media health transmission effect index system to identify the critical factors affecting health transmission.
Results: Simulation results reveal that among the three factors, health transmission has the most significant impact on the evolution of group perspectives during infectious disease events. Moreover, the dynamics of public viewpoint evolution influence individual decisions regarding the adoption of non-pharmacological interventions, which are shown to effectively reduce both the transmission rate of the virus and the peak number of infections.
Conclusion: The findings of this study enhance our understanding of the complex mechanisms and evolutionary pathways in infectious disease events. By integrating multiple dimensions of event evolution, the proposed model offers valuable insights for the design of effective countermeasures and strategies in emergency management and response to infectious disease outbreaks.
期刊介绍:
Risk Management and Healthcare Policy is an international, peer-reviewed, open access journal focusing on all aspects of public health, policy and preventative measures to promote good health and improve morbidity and mortality in the population. Specific topics covered in the journal include:
Public and community health
Policy and law
Preventative and predictive healthcare
Risk and hazard management
Epidemiology, detection and screening
Lifestyle and diet modification
Vaccination and disease transmission/modification programs
Health and safety and occupational health
Healthcare services provision
Health literacy and education
Advertising and promotion of health issues
Health economic evaluations and resource management
Risk Management and Healthcare Policy focuses on human interventional and observational research. The journal welcomes submitted papers covering original research, clinical and epidemiological studies, reviews and evaluations, guidelines, expert opinion and commentary, and extended reports. Case reports will only be considered if they make a valuable and original contribution to the literature. The journal does not accept study protocols, animal-based or cell line-based studies.