Asymmetric Benzene Sulfonamide Sodium Salt Enabling Stable Cycling in Solid-State Sodium Metal Batteries.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-05-08 DOI:10.1002/cssc.202500245
Itziar Aldalur, Jorge Luis Olmedo-Martinez, Lorena Garcia, Asier Fernández De Añastro, Koray Cavusoglu, David Mecerreyes, Alejandro Jesus Müller, Michel Armand, María Martinez-Ibañez
{"title":"Asymmetric Benzene Sulfonamide Sodium Salt Enabling Stable Cycling in Solid-State Sodium Metal Batteries.","authors":"Itziar Aldalur, Jorge Luis Olmedo-Martinez, Lorena Garcia, Asier Fernández De Añastro, Koray Cavusoglu, David Mecerreyes, Alejandro Jesus Müller, Michel Armand, María Martinez-Ibañez","doi":"10.1002/cssc.202500245","DOIUrl":null,"url":null,"abstract":"<p><p>With renewable energy and electric vehicles driving demand, safer and cost-effective alternatives to lithium-ion batteries are being sought. This study explores the development of a novel sodium salt, sodium (benzenesulfonyl)(trifluoromethanesulfonyl) imide (NaBTFSI), for all-solid-state sodium metal batteries (ASSSMBs). NaBTFSI offers a promising electrolyte option by improving sodium-ion transference number ( <math> <semantics> <mrow><msubsup><mi>T</mi> <mrow><mtext>Na</mtext></mrow> <mo>+</mo></msubsup> </mrow> <annotation>$T_{\\text{Na}}^{&#x00026;amp;amp;amp;amp;amp;amp;plus;}$</annotation></semantics> </math> ), conductivity, and stability of sodium metal (Na°) anode cycling. When combined with poly(ethylene oxide), NaBTFSI forms safe solid polymer electrolytes with high mechanical strength, effectively mitigating dendrite growth and polarization issues common in sodium anodes. Characterization shows NaBTFSI enhances the electrochemical performance through π-π stacking interactions, which stabilize the polymer matrix and increase ionic conductivity (≈4.0 × 10<sup>-</sup> <sup>4</sup> S cm<sup>-1</sup>) at elevated temperatures (70 °C). NaBTFSI-based electrolytes exhibit higher stability with sodium anodes than the conventional sodium bis(trifluoromethanesulfonyl)imide salt, supporting prolonged cycling in Na<sup>o</sup>||Na<sup>o</sup> symmetric cells and demonstrating potential for sustainable, high-performance ASSSMBs.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e2500245"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500245","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

With renewable energy and electric vehicles driving demand, safer and cost-effective alternatives to lithium-ion batteries are being sought. This study explores the development of a novel sodium salt, sodium (benzenesulfonyl)(trifluoromethanesulfonyl) imide (NaBTFSI), for all-solid-state sodium metal batteries (ASSSMBs). NaBTFSI offers a promising electrolyte option by improving sodium-ion transference number ( T Na + $T_{\text{Na}}^{&amp;amp;amp;amp;amp;amp;plus;}$ ), conductivity, and stability of sodium metal (Na°) anode cycling. When combined with poly(ethylene oxide), NaBTFSI forms safe solid polymer electrolytes with high mechanical strength, effectively mitigating dendrite growth and polarization issues common in sodium anodes. Characterization shows NaBTFSI enhances the electrochemical performance through π-π stacking interactions, which stabilize the polymer matrix and increase ionic conductivity (≈4.0 × 10- 4 S cm-1) at elevated temperatures (70 °C). NaBTFSI-based electrolytes exhibit higher stability with sodium anodes than the conventional sodium bis(trifluoromethanesulfonyl)imide salt, supporting prolonged cycling in Nao||Nao symmetric cells and demonstrating potential for sustainable, high-performance ASSSMBs.

不对称苯磺酰胺钠盐在固态金属钠电池中实现稳定循环。
随着可再生能源和电动汽车的需求不断增长,人们正在寻找更安全、更经济的锂离子电池替代品。本研究探索了一种用于全固态钠金属电池(ASSSMBs)的新型钠盐,钠(苯磺酰)(三氟甲烷磺酰)亚胺(NaBTFSI)的开发。NaBTFSI通过改善钠离子转移数(TNa+)、电导率和金属钠(Na°)阳极循环的稳定性,提供了一种有前途的电解质选择。当与聚环氧乙烷(PEO)结合时,NaBTFSI形成具有高机械强度的安全固体聚合物电解质(spe),有效地减轻了钠阳极中常见的枝晶生长和极化问题。表征表明,NaBTFSI通过π-π堆叠相互作用增强了电化学性能,在高温(70℃)下稳定了聚合物基体,提高了离子电导率(约4.0 × 10-4 S cm-1)。基于nabtfsi的电解质在钠阳极上表现出比传统的二(三氟甲磺酰基)亚胺钠(NaTFSI)盐更高的稳定性,支持在Nao||Nao对称电池中长时间循环,并显示出可持续、高性能asssmb的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信