Itziar Aldalur, Jorge Luis Olmedo-Martinez, Lorena Garcia, Asier Fernández De Añastro, Koray Cavusoglu, David Mecerreyes, Alejandro Jesus Müller, Michel Armand, María Martinez-Ibañez
{"title":"Asymmetric Benzene Sulfonamide Sodium Salt Enabling Stable Cycling in Solid-State Sodium Metal Batteries.","authors":"Itziar Aldalur, Jorge Luis Olmedo-Martinez, Lorena Garcia, Asier Fernández De Añastro, Koray Cavusoglu, David Mecerreyes, Alejandro Jesus Müller, Michel Armand, María Martinez-Ibañez","doi":"10.1002/cssc.202500245","DOIUrl":null,"url":null,"abstract":"<p><p>With renewable energy and electric vehicles driving demand, safer and cost-effective alternatives to lithium-ion batteries are being sought. This study explores the development of a novel sodium salt, sodium (benzenesulfonyl)(trifluoromethanesulfonyl) imide (NaBTFSI), for all-solid-state sodium metal batteries (ASSSMBs). NaBTFSI offers a promising electrolyte option by improving sodium-ion transference number ( <math> <semantics> <mrow><msubsup><mi>T</mi> <mrow><mtext>Na</mtext></mrow> <mo>+</mo></msubsup> </mrow> <annotation>$T_{\\text{Na}}^{&amp;amp;amp;amp;amp;amp;plus;}$</annotation></semantics> </math> ), conductivity, and stability of sodium metal (Na°) anode cycling. When combined with poly(ethylene oxide), NaBTFSI forms safe solid polymer electrolytes with high mechanical strength, effectively mitigating dendrite growth and polarization issues common in sodium anodes. Characterization shows NaBTFSI enhances the electrochemical performance through π-π stacking interactions, which stabilize the polymer matrix and increase ionic conductivity (≈4.0 × 10<sup>-</sup> <sup>4</sup> S cm<sup>-1</sup>) at elevated temperatures (70 °C). NaBTFSI-based electrolytes exhibit higher stability with sodium anodes than the conventional sodium bis(trifluoromethanesulfonyl)imide salt, supporting prolonged cycling in Na<sup>o</sup>||Na<sup>o</sup> symmetric cells and demonstrating potential for sustainable, high-performance ASSSMBs.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e2500245"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500245","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With renewable energy and electric vehicles driving demand, safer and cost-effective alternatives to lithium-ion batteries are being sought. This study explores the development of a novel sodium salt, sodium (benzenesulfonyl)(trifluoromethanesulfonyl) imide (NaBTFSI), for all-solid-state sodium metal batteries (ASSSMBs). NaBTFSI offers a promising electrolyte option by improving sodium-ion transference number ( ), conductivity, and stability of sodium metal (Na°) anode cycling. When combined with poly(ethylene oxide), NaBTFSI forms safe solid polymer electrolytes with high mechanical strength, effectively mitigating dendrite growth and polarization issues common in sodium anodes. Characterization shows NaBTFSI enhances the electrochemical performance through π-π stacking interactions, which stabilize the polymer matrix and increase ionic conductivity (≈4.0 × 10-4 S cm-1) at elevated temperatures (70 °C). NaBTFSI-based electrolytes exhibit higher stability with sodium anodes than the conventional sodium bis(trifluoromethanesulfonyl)imide salt, supporting prolonged cycling in Nao||Nao symmetric cells and demonstrating potential for sustainable, high-performance ASSSMBs.
随着可再生能源和电动汽车的需求不断增长,人们正在寻找更安全、更经济的锂离子电池替代品。本研究探索了一种用于全固态钠金属电池(ASSSMBs)的新型钠盐,钠(苯磺酰)(三氟甲烷磺酰)亚胺(NaBTFSI)的开发。NaBTFSI通过改善钠离子转移数(TNa+)、电导率和金属钠(Na°)阳极循环的稳定性,提供了一种有前途的电解质选择。当与聚环氧乙烷(PEO)结合时,NaBTFSI形成具有高机械强度的安全固体聚合物电解质(spe),有效地减轻了钠阳极中常见的枝晶生长和极化问题。表征表明,NaBTFSI通过π-π堆叠相互作用增强了电化学性能,在高温(70℃)下稳定了聚合物基体,提高了离子电导率(约4.0 × 10-4 S cm-1)。基于nabtfsi的电解质在钠阳极上表现出比传统的二(三氟甲磺酰基)亚胺钠(NaTFSI)盐更高的稳定性,支持在Nao||Nao对称电池中长时间循环,并显示出可持续、高性能asssmb的潜力。
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology