Matthew Andres Moreno;Santiago Rodriguez-Papa;Emily Dolson
{"title":"Ecology, Spatial Structure, and Selection Pressure Induce Strong Signatures in Phylogenetic Structure","authors":"Matthew Andres Moreno;Santiago Rodriguez-Papa;Emily Dolson","doi":"10.1162/artl_a_00470","DOIUrl":null,"url":null,"abstract":"Evolutionary dynamics are shaped by a variety of fundamental, generic drivers, including spatial structure, ecology, and selection pressure. These drivers impact the trajectory of evolution and have been hypothesized to influence phylogenetic structure. For instance, they can help explain natural history, steer behavior of contemporary evolving populations, and influence the efficacy of application-oriented evolutionary optimization. Likewise, in inquiry-oriented Artificial Life systems, these drivers constitute key building blocks for open-ended evolution. Here we set out to assess (a) if spatial structure, ecology, and selection pressure leave detectable signatures in phylogenetic structure; (b) the extent, in particular, to which ecology can be detected and discerned in the presence of spatial structure; and (c) the extent to which these phylogenetic signatures generalize across evolutionary systems. To this end, we analyze phylogenies generated by manipulating spatial structure, ecology, and selection pressure within three computational models of varied scope and sophistication. We find that selection pressure, spatial structure, and ecology have characteristic effects on phylogenetic metrics, although these effects are complex and not always intuitive. Signatures have some consistency across systems when using equivalent taxonomic unit definitions (e.g., individual, genotype, species). Furthermore, we find that sufficiently strong ecology can be detected in the presence of spatial structure. We also find that, while low-resolution phylogenetic reconstructions can bias some phylogenetic metrics, high-resolution reconstructions recapitulate them faithfully. Although our results suggest a potential for evolutionary inference of spatial structure, ecology, and selection pressure through phylogenetic analysis, further methods development is needed to distinguish these drivers’ phylometric signatures from each other and to appropriately normalize phylogenetic metrics. With such work, phylogenetic analysis could provide a versatile tool kit with which to study large-scale, evolving populations.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"31 2","pages":"129-152"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11007774/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Evolutionary dynamics are shaped by a variety of fundamental, generic drivers, including spatial structure, ecology, and selection pressure. These drivers impact the trajectory of evolution and have been hypothesized to influence phylogenetic structure. For instance, they can help explain natural history, steer behavior of contemporary evolving populations, and influence the efficacy of application-oriented evolutionary optimization. Likewise, in inquiry-oriented Artificial Life systems, these drivers constitute key building blocks for open-ended evolution. Here we set out to assess (a) if spatial structure, ecology, and selection pressure leave detectable signatures in phylogenetic structure; (b) the extent, in particular, to which ecology can be detected and discerned in the presence of spatial structure; and (c) the extent to which these phylogenetic signatures generalize across evolutionary systems. To this end, we analyze phylogenies generated by manipulating spatial structure, ecology, and selection pressure within three computational models of varied scope and sophistication. We find that selection pressure, spatial structure, and ecology have characteristic effects on phylogenetic metrics, although these effects are complex and not always intuitive. Signatures have some consistency across systems when using equivalent taxonomic unit definitions (e.g., individual, genotype, species). Furthermore, we find that sufficiently strong ecology can be detected in the presence of spatial structure. We also find that, while low-resolution phylogenetic reconstructions can bias some phylogenetic metrics, high-resolution reconstructions recapitulate them faithfully. Although our results suggest a potential for evolutionary inference of spatial structure, ecology, and selection pressure through phylogenetic analysis, further methods development is needed to distinguish these drivers’ phylometric signatures from each other and to appropriately normalize phylogenetic metrics. With such work, phylogenetic analysis could provide a versatile tool kit with which to study large-scale, evolving populations.
期刊介绍:
Artificial Life, launched in the fall of 1993, has become the unifying forum for the exchange of scientific information on the study of artificial systems that exhibit the behavioral characteristics of natural living systems, through the synthesis or simulation using computational (software), robotic (hardware), and/or physicochemical (wetware) means. Each issue features cutting-edge research on artificial life that advances the state-of-the-art of our knowledge about various aspects of living systems such as:
Artificial chemistry and the origins of life
Self-assembly, growth, and development
Self-replication and self-repair
Systems and synthetic biology
Perception, cognition, and behavior
Embodiment and enactivism
Collective behaviors of swarms
Evolutionary and ecological dynamics
Open-endedness and creativity
Social organization and cultural evolution
Societal and technological implications
Philosophy and aesthetics
Applications to biology, medicine, business, education, or entertainment.