Biallelic MED16 variants disrupt neural development and lead to an intellectual disability syndrome.

IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yan Huang, Zhenglong Xiang, Yaqin Xiang, Hu Pan, Mei He, Zhenming Guo, Oguz Kanca, Chen Liu, Zhao Zhang, Huaizhe Zhan, Yuan Wang, Qing-Ran Bai, Hugo J Bellen, Hua Wang, Shan Bian, Xiao Mao
{"title":"Biallelic MED16 variants disrupt neural development and lead to an intellectual disability syndrome.","authors":"Yan Huang, Zhenglong Xiang, Yaqin Xiang, Hu Pan, Mei He, Zhenming Guo, Oguz Kanca, Chen Liu, Zhao Zhang, Huaizhe Zhan, Yuan Wang, Qing-Ran Bai, Hugo J Bellen, Hua Wang, Shan Bian, Xiao Mao","doi":"10.1016/j.jgg.2025.04.004","DOIUrl":null,"url":null,"abstract":"<p><p>Mediator Complex Subunit 16 (MED16, MIM: 604062) is a member of the Mediator complex, which controls many aspects of transcriptional activity in all eukaryotes. Here, we report two individuals from a non-consanguineous family with biallelic variants in MED16 identified by exome sequencing. The affected individuals present with global developmental delay, intellectual disability, and dysmorphisms. To assess the pathogenicity of the variants, functional studies are performed in Drosophila and patient-derived cells. The fly ortholog med16 is expressed in neurons and some glia of the developing central nervous system (CNS). Loss of med16 leads to a reduction in eclosion and lifespan, as well as impaired synaptic transmission. In neurons differentiated from the patient-derived induced pluripotent stem cells (iPSCs), the neurite outgrowth is impaired and rescued by expression of exogenous MED16. The patient-associated variants behave as loss-of-function (LoF) alleles in flies and iPSCs. Additionally, the transcription of genes related to neuronal maturation and function is preferentially altered in patient cells relative to differentiated H9 controls. In summary, our findings support that MED16 is important for appropriate development and function, and that biallelic MED16 variants cause a neurodevelopmental disease.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jgg.2025.04.004","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mediator Complex Subunit 16 (MED16, MIM: 604062) is a member of the Mediator complex, which controls many aspects of transcriptional activity in all eukaryotes. Here, we report two individuals from a non-consanguineous family with biallelic variants in MED16 identified by exome sequencing. The affected individuals present with global developmental delay, intellectual disability, and dysmorphisms. To assess the pathogenicity of the variants, functional studies are performed in Drosophila and patient-derived cells. The fly ortholog med16 is expressed in neurons and some glia of the developing central nervous system (CNS). Loss of med16 leads to a reduction in eclosion and lifespan, as well as impaired synaptic transmission. In neurons differentiated from the patient-derived induced pluripotent stem cells (iPSCs), the neurite outgrowth is impaired and rescued by expression of exogenous MED16. The patient-associated variants behave as loss-of-function (LoF) alleles in flies and iPSCs. Additionally, the transcription of genes related to neuronal maturation and function is preferentially altered in patient cells relative to differentiated H9 controls. In summary, our findings support that MED16 is important for appropriate development and function, and that biallelic MED16 variants cause a neurodevelopmental disease.

双等位基因MED16变异破坏神经发育并导致智力残疾综合征。
中介体亚基16 (MED16, MIM: 604062)是中介体复合体的一个成员,在所有真核生物中控制着许多方面的转录活性。在这里,我们报告了两个来自非近亲家庭的个体,通过外显子组测序鉴定出MED16双等位基因变异。受影响的个体表现为整体发育迟缓、智力残疾和畸形。为了评估变异的致病性,在果蝇和患者来源的细胞中进行了功能研究。蝇同源基因med16在发育中的中枢神经系统(CNS)的神经元和部分胶质细胞中表达。med16的缺失会导致羽化和寿命的缩短,以及突触传递的受损。在由患者来源的诱导多能干细胞(iPSCs)分化的神经元中,外源MED16的表达会损害和挽救神经突的生长。在果蝇和iPSCs中,患者相关的变异表现为功能丧失(LoF)等位基因。此外,与分化的H9对照相比,患者细胞中与神经元成熟和功能相关的基因转录优先改变。总之,我们的研究结果支持MED16对于适当的发育和功能是重要的,并且双等位基因MED16变异导致神经发育疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Genetics and Genomics
Journal of Genetics and Genomics 生物-生化与分子生物学
CiteScore
8.20
自引率
3.40%
发文量
4756
审稿时长
14 days
期刊介绍: The Journal of Genetics and Genomics (JGG, formerly known as Acta Genetica Sinica ) is an international journal publishing peer-reviewed articles of novel and significant discoveries in the fields of genetics and genomics. Topics of particular interest include but are not limited to molecular genetics, developmental genetics, cytogenetics, epigenetics, medical genetics, population and evolutionary genetics, genomics and functional genomics as well as bioinformatics and computational biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信