scCompass: An Integrated Multi-Species scRNA-seq Database for AI-Ready.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Pengfei Wang, Wenhao Liu, Jiajia Wang, Yana Liu, Pengjiang Li, Ping Xu, Wentao Cui, Ran Zhang, Qingqing Long, Zhilong Hu, Chen Fang, Jingxi Dong, Chunyang Zhang, Yan Chen, Chengrui Wang, Guole Liu, Hanyu Xie, Yiyang Zhang, Meng Xiao, Shubai Chen, Haiping Jiang, Yiqiang Chen, Ge Yang, Shihua Zhang, Zhen Meng, Xuezhi Wang, Guihai Feng, Xin Li, Yuanchun Zhou
{"title":"scCompass: An Integrated Multi-Species scRNA-seq Database for AI-Ready.","authors":"Pengfei Wang, Wenhao Liu, Jiajia Wang, Yana Liu, Pengjiang Li, Ping Xu, Wentao Cui, Ran Zhang, Qingqing Long, Zhilong Hu, Chen Fang, Jingxi Dong, Chunyang Zhang, Yan Chen, Chengrui Wang, Guole Liu, Hanyu Xie, Yiyang Zhang, Meng Xiao, Shubai Chen, Haiping Jiang, Yiqiang Chen, Ge Yang, Shihua Zhang, Zhen Meng, Xuezhi Wang, Guihai Feng, Xin Li, Yuanchun Zhou","doi":"10.1002/advs.202500870","DOIUrl":null,"url":null,"abstract":"<p><p>Emerging single-cell sequencing technology has generated large amounts of data, allowing analysis of cellular dynamics and gene regulation at the single-cell resolution. Advances in artificial intelligence enhance life sciences research by delivering critical insights and optimizing data analysis processes. However, inconsistent data processing quality and standards remain to be a major challenge. Here scCompass is proposed, which provides a comprehensive resource designed to build large-scale, multi-species, and model-friendly single-cell data collection. By applying standardized data pre-processing, scCompass integrates and curates transcriptomic data from nearly 105 million single cells across 13 species. Using this extensive dataset, it is able to identify stable expression genes (SEGs) and organ-specific expression genes (OSGs) in humans and mice. Different scalable datasets are provided that can be easily adapted for AI model training and the pretrained checkpoints with state-of-the-art single-cell foundation models. In summary, scCompass is highly efficient and scalable database for AI-ready, which combined with user-friendly data sharing, visualization, and online analysis, greatly simplifies data access and exploitation for researchers in single-cell biology (http://www.bdbe.cn/kun).</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2500870"},"PeriodicalIF":14.3000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202500870","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Emerging single-cell sequencing technology has generated large amounts of data, allowing analysis of cellular dynamics and gene regulation at the single-cell resolution. Advances in artificial intelligence enhance life sciences research by delivering critical insights and optimizing data analysis processes. However, inconsistent data processing quality and standards remain to be a major challenge. Here scCompass is proposed, which provides a comprehensive resource designed to build large-scale, multi-species, and model-friendly single-cell data collection. By applying standardized data pre-processing, scCompass integrates and curates transcriptomic data from nearly 105 million single cells across 13 species. Using this extensive dataset, it is able to identify stable expression genes (SEGs) and organ-specific expression genes (OSGs) in humans and mice. Different scalable datasets are provided that can be easily adapted for AI model training and the pretrained checkpoints with state-of-the-art single-cell foundation models. In summary, scCompass is highly efficient and scalable database for AI-ready, which combined with user-friendly data sharing, visualization, and online analysis, greatly simplifies data access and exploitation for researchers in single-cell biology (http://www.bdbe.cn/kun).

scCompass:一个集成的多物种scRNA-seq数据库。
新兴的单细胞测序技术产生了大量的数据,允许在单细胞分辨率上分析细胞动力学和基因调控。人工智能的进步通过提供关键的见解和优化数据分析过程来加强生命科学研究。然而,不一致的数据处理质量和标准仍然是一个主要挑战。本文提出了scCompass,它提供了一个全面的资源,旨在建立大规模,多物种和模型友好的单细胞数据收集。通过标准化的数据预处理,scCompass整合并整理了来自13个物种近1.05亿个单细胞的转录组数据。利用这个广泛的数据集,它能够识别人类和小鼠的稳定表达基因(seg)和器官特异性表达基因(osg)。提供了不同的可扩展数据集,可以很容易地适应人工智能模型训练和具有最先进的单细胞基础模型的预训练检查点。总之,scCompass是一个高效、可扩展的ai就绪数据库,结合用户友好的数据共享、可视化和在线分析,极大地简化了单细胞生物学研究人员的数据访问和利用(http://www.bdbe.cn/kun)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信