Eysteinn Finnsson, Ernir Erlingsson, Hlynur D Hlynsson, Vaka Valsdóttir, Thora B Sigmarsdottir, Eydís Arnardóttir, Scott A Sands, Sigurður Æ Jónsson, Anna S Islind, Jón S Ágústsson
{"title":"Detecting arousals and sleep from respiratory inductance plethysmography.","authors":"Eysteinn Finnsson, Ernir Erlingsson, Hlynur D Hlynsson, Vaka Valsdóttir, Thora B Sigmarsdottir, Eydís Arnardóttir, Scott A Sands, Sigurður Æ Jónsson, Anna S Islind, Jón S Ágústsson","doi":"10.1007/s11325-025-03325-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Accurately identifying sleep states (REM, NREM, and Wake) and brief awakenings (arousals) is essential for diagnosing sleep disorders. Polysomnography (PSG) is the gold standard for such assessments but is costly and requires overnight monitoring in a lab. Home sleep testing (HST) offers a more accessible alternative, relying primarily on breathing measurements but lacks electroencephalography, limiting its ability to evaluate sleep and arousals directly. This study evaluates a deep learning algorithm which determines sleep states and arousals from breathing signals.</p><p><strong>Methods: </strong>A novel deep learning algorithm was developed to classify sleep states and detect arousals from respiratory inductance plethysmography signals. Sleep states were predicted for 30-s intervals (one sleep epoch), while arousal probabilities were calculated at 1-s resolution. Validation was conducted on a clinical dataset of 1,299 adults with suspected sleep disorders. Performance was assessed at the epoch level for sensitivity and specificity, with agreement analyses for arousal index (ArI) and total sleep time (TST).</p><p><strong>Results: </strong>The algorithm achieved sensitivity and specificity of 77.9% and 96.2% for Wake, 93.9% and 80.4% for NREM, 80.5% and 98.2% for REM, and 66.1% and 86.7% for arousals. Bland-Altman analysis showed ArI limits of agreement ranging from - 32 to 24 events/hour (bias: - 4.4) and TST limits from - 47 to 64 min (bias: 8.0). Intraclass correlation was 0.74 for ArI and 0.91 for TST.</p><p><strong>Conclusion: </strong>The algorithm identifies sleep states and arousals from breathing signals with agreement comparable to established variability in manual scoring. These results highlight its potential to advance HST capabilities, enabling more accessible, cost-effective and reliable sleep diagnostics.</p>","PeriodicalId":21862,"journal":{"name":"Sleep and Breathing","volume":"29 2","pages":"155"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11991959/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sleep and Breathing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11325-025-03325-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Accurately identifying sleep states (REM, NREM, and Wake) and brief awakenings (arousals) is essential for diagnosing sleep disorders. Polysomnography (PSG) is the gold standard for such assessments but is costly and requires overnight monitoring in a lab. Home sleep testing (HST) offers a more accessible alternative, relying primarily on breathing measurements but lacks electroencephalography, limiting its ability to evaluate sleep and arousals directly. This study evaluates a deep learning algorithm which determines sleep states and arousals from breathing signals.
Methods: A novel deep learning algorithm was developed to classify sleep states and detect arousals from respiratory inductance plethysmography signals. Sleep states were predicted for 30-s intervals (one sleep epoch), while arousal probabilities were calculated at 1-s resolution. Validation was conducted on a clinical dataset of 1,299 adults with suspected sleep disorders. Performance was assessed at the epoch level for sensitivity and specificity, with agreement analyses for arousal index (ArI) and total sleep time (TST).
Results: The algorithm achieved sensitivity and specificity of 77.9% and 96.2% for Wake, 93.9% and 80.4% for NREM, 80.5% and 98.2% for REM, and 66.1% and 86.7% for arousals. Bland-Altman analysis showed ArI limits of agreement ranging from - 32 to 24 events/hour (bias: - 4.4) and TST limits from - 47 to 64 min (bias: 8.0). Intraclass correlation was 0.74 for ArI and 0.91 for TST.
Conclusion: The algorithm identifies sleep states and arousals from breathing signals with agreement comparable to established variability in manual scoring. These results highlight its potential to advance HST capabilities, enabling more accessible, cost-effective and reliable sleep diagnostics.
期刊介绍:
The journal Sleep and Breathing aims to reflect the state of the art in the international science and practice of sleep medicine. The journal is based on the recognition that management of sleep disorders requires a multi-disciplinary approach and diverse perspectives. The initial focus of Sleep and Breathing is on timely and original studies that collect, intervene, or otherwise inform all clinicians and scientists in medicine, dentistry and oral surgery, otolaryngology, and epidemiology on the management of the upper airway during sleep.
Furthermore, Sleep and Breathing endeavors to bring readers cutting edge information about all evolving aspects of common sleep disorders or disruptions, such as insomnia and shift work. The journal includes not only patient studies, but also studies that emphasize the principles of physiology and pathophysiology or illustrate potentially novel approaches to diagnosis and treatment. In addition, the journal features articles that describe patient-oriented and cost-benefit health outcomes research. Thus, with peer review by an international Editorial Board and prompt English-language publication, Sleep and Breathing provides rapid dissemination of clinical and clinically related scientific information. But it also does more: it is dedicated to making the most important developments in sleep disordered breathing easily accessible to clinicians who are treating sleep apnea by presenting well-chosen, well-written, and highly organized information that is useful for patient care.