A Critical Review of the Prospect of Integrating Artificial Intelligence in Infectious Disease Diagnosis and Prognosis.

Q3 Immunology and Microbiology
Interdisciplinary Perspectives on Infectious Diseases Pub Date : 2025-03-06 eCollection Date: 2025-01-01 DOI:10.1155/ipid/6816002
Shuaibu Abdullahi Hudu, Ahmed Subeh Alshrari, Esra'a Jebreel Ibrahim Abu-Shoura, Amira Osman, Abdulgafar Olayiwola Jimoh
{"title":"A Critical Review of the Prospect of Integrating Artificial Intelligence in Infectious Disease Diagnosis and Prognosis.","authors":"Shuaibu Abdullahi Hudu, Ahmed Subeh Alshrari, Esra'a Jebreel Ibrahim Abu-Shoura, Amira Osman, Abdulgafar Olayiwola Jimoh","doi":"10.1155/ipid/6816002","DOIUrl":null,"url":null,"abstract":"<p><p>This paper explores the transformative potential of integrating artificial intelligence (AI) in the diagnosis and prognosis of infectious diseases. By analyzing diverse datasets, including clinical symptoms, laboratory results, and imaging data, AI algorithms can significantly enhance early detection and personalized treatment strategies. This paper reviews how AI-driven models improve diagnostic accuracy, predict patient outcomes, and contribute to effective disease management. It also addresses the challenges and ethical considerations associated with AI, including data privacy, algorithmic bias, and equitable access to healthcare. Highlighting case studies and recent advancements, the paper underscores AI's role in revolutionizing infectious disease management and its implications for future healthcare delivery.</p>","PeriodicalId":39128,"journal":{"name":"Interdisciplinary Perspectives on Infectious Diseases","volume":"2025 ","pages":"6816002"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11991796/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Perspectives on Infectious Diseases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/ipid/6816002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores the transformative potential of integrating artificial intelligence (AI) in the diagnosis and prognosis of infectious diseases. By analyzing diverse datasets, including clinical symptoms, laboratory results, and imaging data, AI algorithms can significantly enhance early detection and personalized treatment strategies. This paper reviews how AI-driven models improve diagnostic accuracy, predict patient outcomes, and contribute to effective disease management. It also addresses the challenges and ethical considerations associated with AI, including data privacy, algorithmic bias, and equitable access to healthcare. Highlighting case studies and recent advancements, the paper underscores AI's role in revolutionizing infectious disease management and its implications for future healthcare delivery.

人工智能在传染病诊断与预后中的应用前景综述
本文探讨了将人工智能(AI)整合到传染病的诊断和预后中的变革潜力。通过分析不同的数据集,包括临床症状、实验室结果和成像数据,人工智能算法可以显著增强早期发现和个性化治疗策略。本文综述了人工智能驱动的模型如何提高诊断准确性,预测患者预后,并有助于有效的疾病管理。它还解决了与人工智能相关的挑战和道德考虑,包括数据隐私、算法偏见和公平获得医疗保健。通过案例研究和最新进展,该论文强调了人工智能在传染病管理革命中的作用及其对未来医疗保健服务的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
51
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信