Accurate prediction of absolute prokaryotic abundance from DNA concentration.

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS
Cell Reports Methods Pub Date : 2025-05-19 Epub Date: 2025-04-28 DOI:10.1016/j.crmeth.2025.101030
Jakob Wirbel, Tessa M Andermann, Erin F Brooks, Lanya Evans, Adam Groth, Mai Dvorak, Meenakshi Chakraborty, Bianca Palushaj, Gabriella Z M Reynolds, Imani E Porter, Monzr Al Malki, Andrew Rezvani, Mahasweta Gooptu, Hany Elmariah, Lyndsey Runaas, Teng Fei, Michael J Martens, Javier Bolaños-Meade, Mehdi Hamadani, Shernan Holtan, Rob Jenq, Jonathan U Peled, Mary M Horowitz, Kathleen L Poston, Wael Saber, Leslie S Kean, Miguel-Angel Perales, Ami S Bhatt
{"title":"Accurate prediction of absolute prokaryotic abundance from DNA concentration.","authors":"Jakob Wirbel, Tessa M Andermann, Erin F Brooks, Lanya Evans, Adam Groth, Mai Dvorak, Meenakshi Chakraborty, Bianca Palushaj, Gabriella Z M Reynolds, Imani E Porter, Monzr Al Malki, Andrew Rezvani, Mahasweta Gooptu, Hany Elmariah, Lyndsey Runaas, Teng Fei, Michael J Martens, Javier Bolaños-Meade, Mehdi Hamadani, Shernan Holtan, Rob Jenq, Jonathan U Peled, Mary M Horowitz, Kathleen L Poston, Wael Saber, Leslie S Kean, Miguel-Angel Perales, Ami S Bhatt","doi":"10.1016/j.crmeth.2025.101030","DOIUrl":null,"url":null,"abstract":"<p><p>Quantification of the absolute microbial abundance in a human stool sample is crucial for a comprehensive understanding of the microbial ecosystem, but this information is lost upon metagenomic sequencing. While several methods exist to measure absolute microbial abundance, they are technically challenging and costly, presenting an opportunity for machine learning. Here, we observe a strong correlation between DNA concentration and the absolute number of 16S ribosomal RNA copies as measured by digital droplet PCR in clinical stool samples from individuals undergoing hematopoietic cell transplantation (BMT CTN 1801). Based on this correlation and additional measurements, we trained an accurate yet simple machine learning model for the prediction of absolute prokaryotic load, which showed exceptional prediction accuracy on an external cohort that includes people living with Parkinson's disease and healthy controls. We propose that, with further validation, this model has the potential to enable accurate absolute abundance estimation based on readily available sample measurements.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"101030"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2025.101030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Quantification of the absolute microbial abundance in a human stool sample is crucial for a comprehensive understanding of the microbial ecosystem, but this information is lost upon metagenomic sequencing. While several methods exist to measure absolute microbial abundance, they are technically challenging and costly, presenting an opportunity for machine learning. Here, we observe a strong correlation between DNA concentration and the absolute number of 16S ribosomal RNA copies as measured by digital droplet PCR in clinical stool samples from individuals undergoing hematopoietic cell transplantation (BMT CTN 1801). Based on this correlation and additional measurements, we trained an accurate yet simple machine learning model for the prediction of absolute prokaryotic load, which showed exceptional prediction accuracy on an external cohort that includes people living with Parkinson's disease and healthy controls. We propose that, with further validation, this model has the potential to enable accurate absolute abundance estimation based on readily available sample measurements.

从DNA浓度准确预测绝对原核生物丰度。
人类粪便样本中绝对微生物丰度的定量对于全面了解微生物生态系统至关重要,但这一信息在宏基因组测序中丢失。虽然有几种方法可以测量绝对微生物丰度,但它们在技术上具有挑战性且成本高昂,为机器学习提供了机会。在这里,我们观察到在接受造血细胞移植(BMT CTN 1801)的个体的临床粪便样本中,DNA浓度与16S核糖体RNA拷贝的绝对数量之间存在很强的相关性。基于这种相关性和其他测量,我们训练了一个准确而简单的机器学习模型来预测绝对原核负荷,该模型在包括帕金森病患者和健康对照者在内的外部队列中显示出卓越的预测准确性。我们建议,通过进一步验证,该模型有可能实现基于现成样品测量的准确绝对丰度估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信