RadField3D: a data generator and data format for deep learning in radiation-protection dosimetry for medical applications.

IF 1.4 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Felix Lehner, Pasquale Lombardo, Susana Castillo, Oliver Hupe, Marcus Magnor
{"title":"RadField3D: a data generator and data format for deep learning in radiation-protection dosimetry for medical applications.","authors":"Felix Lehner, Pasquale Lombardo, Susana Castillo, Oliver Hupe, Marcus Magnor","doi":"10.1088/1361-6498/add53d","DOIUrl":null,"url":null,"abstract":"<p><p>In this research work, we present our open-source Geant4-based Monte-Carlo simulation application, called RadField3D, for generating three-dimensional radiation field datasets for dosimetry. Accompanying, we introduce a fast, machine-interpretable data format with a Python application programming interface for easy integration into neural network research, that we call RadFiled3D. Both developments are intended to be used to research alternative radiation simulation methods using deep learning. All data used for our validation (measured and simulated), along with our source codes, are published in separate repositories.https://github.com/Centrasis/RadField3DSimulationhttps://github.com/Centrasis/RadFiled3D.</p>","PeriodicalId":50068,"journal":{"name":"Journal of Radiological Protection","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiological Protection","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1088/1361-6498/add53d","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this research work, we present our open-source Geant4-based Monte-Carlo simulation application, called RadField3D, for generating three-dimensional radiation field datasets for dosimetry. Accompanying, we introduce a fast, machine-interpretable data format with a Python application programming interface for easy integration into neural network research, that we call RadFiled3D. Both developments are intended to be used to research alternative radiation simulation methods using deep learning. All data used for our validation (measured and simulated), along with our source codes, are published in separate repositories.https://github.com/Centrasis/RadField3DSimulationhttps://github.com/Centrasis/RadFiled3D.

RadField3D:用于医学应用的辐射防护剂量学深度学习的数据生成器和数据格式。
在这项研究工作中,我们提出了我们的开源基于geant4的蒙特卡罗模拟应用程序,称为RadField3D,用于生成用于剂量学的三维辐射场数据集。同时,我们引入了一种快速的、机器可解释的数据格式,它带有Python API,可以轻松集成到神经网络研究中,我们称之为RadFiled3D。这两项发展都旨在利用深度学习研究替代辐射模拟方法。用于验证的所有数据(测量的和模拟的)以及我们的源代码都发布在单独的存储库中。 https://github.com/Centrasis/RadField3DSimulation https://github.com/Centrasis/RadFiled3D。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Radiological Protection
Journal of Radiological Protection 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
2.60
自引率
26.70%
发文量
137
审稿时长
18-36 weeks
期刊介绍: Journal of Radiological Protection publishes articles on all aspects of radiological protection, including non-ionising as well as ionising radiations. Fields of interest range from research, development and theory to operational matters, education and training. The very wide spectrum of its topics includes: dosimetry, instrument development, specialized measuring techniques, epidemiology, biological effects (in vivo and in vitro) and risk and environmental impact assessments. The journal encourages publication of data and code as well as results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信