Magnetothermal and ultrasound-activated nanoplatform for the inhalable therapy of bacterial lung infections.

Shuai Zhang, Yundi Wu, Chaoyi Lyu, Huanran Qu, Xilong Wu
{"title":"Magnetothermal and ultrasound-activated nanoplatform for the inhalable therapy of bacterial lung infections.","authors":"Shuai Zhang, Yundi Wu, Chaoyi Lyu, Huanran Qu, Xilong Wu","doi":"10.1016/j.actbio.2025.04.041","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotic resistance in Klebsiella pneumoniae infections presents significant challenges in treating lung inflammation. To overcome tissue penetration barriers and modulate inflammatory responses, innovative therapeutic approaches are essential. This study introduces an inhalable nanoplatform, Fe<sub>x</sub>S<sub>y</sub>:Gd@PVP (FGP), based on polyvinylpyrrolidone-modified gadolinium-doped nonstoichiometric iron sulfide nanostructures. The platform integrates synergistic magnetic-ultrasound activation with magnetothermal therapy (mMHT), sonodynamic therapy (SDT), and gas therapy (GT) for targeted bacterial lung infection treatment. Gadolinium incorporation enhances the magnetothermal activation, improving magnetothermal conversion efficiency and sonodynamic performance by increasing magnetic anisotropy, narrowing the semiconductor bandgap, and enriching sulfur vacancies. Delivered via nebulized inhalation, FGP reaches infected lung tissues noninvasively. Exposure to alternating magnetic fields (AMF) and ultrasound (US) generates localized heat and reactive oxygen species (ROS), effectively eliminating bacteria. Simultaneously, AMF and US trigger hydrogen sulfide (H<sub>2</sub>S) release in the acidic microenvironment, reducing inflammation by inhibiting inflammatory factors such as TNF-α and IL-1β through suppression of STAT3 and ERK phosphorylation. This magnetic-ultrasound co-activated inhalable nanoplatform offers a powerful multimodal therapeutic strategy for overcoming clinical challenges associated with bacterial lung infections. STATEMENT OF SIGNIFICANCE: This study introduces an inhalable nanoplatform that effectively treats multidrug-resistant Klebsiella pneumoniae lung infections. By integrating magnetothermal, sonodynamic, and gas therapies, this system eradicates bacteria and reduces inflammation. It uses gadolinium-doped iron sulfide nanostructures to enhance heat, reactive oxygen species, and hydrogen sulfide production, targeting deep lung infections precisely. Unlike traditional antibiotics, this noninvasive approach has minimal side effects and addresses both bacterial clearance and inflammation. This innovative strategy offers a promising solution for antibiotic-resistant infections and could revolutionize respiratory disease management.</p>","PeriodicalId":93848,"journal":{"name":"Acta biomaterialia","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta biomaterialia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.actbio.2025.04.041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Antibiotic resistance in Klebsiella pneumoniae infections presents significant challenges in treating lung inflammation. To overcome tissue penetration barriers and modulate inflammatory responses, innovative therapeutic approaches are essential. This study introduces an inhalable nanoplatform, FexSy:Gd@PVP (FGP), based on polyvinylpyrrolidone-modified gadolinium-doped nonstoichiometric iron sulfide nanostructures. The platform integrates synergistic magnetic-ultrasound activation with magnetothermal therapy (mMHT), sonodynamic therapy (SDT), and gas therapy (GT) for targeted bacterial lung infection treatment. Gadolinium incorporation enhances the magnetothermal activation, improving magnetothermal conversion efficiency and sonodynamic performance by increasing magnetic anisotropy, narrowing the semiconductor bandgap, and enriching sulfur vacancies. Delivered via nebulized inhalation, FGP reaches infected lung tissues noninvasively. Exposure to alternating magnetic fields (AMF) and ultrasound (US) generates localized heat and reactive oxygen species (ROS), effectively eliminating bacteria. Simultaneously, AMF and US trigger hydrogen sulfide (H2S) release in the acidic microenvironment, reducing inflammation by inhibiting inflammatory factors such as TNF-α and IL-1β through suppression of STAT3 and ERK phosphorylation. This magnetic-ultrasound co-activated inhalable nanoplatform offers a powerful multimodal therapeutic strategy for overcoming clinical challenges associated with bacterial lung infections. STATEMENT OF SIGNIFICANCE: This study introduces an inhalable nanoplatform that effectively treats multidrug-resistant Klebsiella pneumoniae lung infections. By integrating magnetothermal, sonodynamic, and gas therapies, this system eradicates bacteria and reduces inflammation. It uses gadolinium-doped iron sulfide nanostructures to enhance heat, reactive oxygen species, and hydrogen sulfide production, targeting deep lung infections precisely. Unlike traditional antibiotics, this noninvasive approach has minimal side effects and addresses both bacterial clearance and inflammation. This innovative strategy offers a promising solution for antibiotic-resistant infections and could revolutionize respiratory disease management.

吸入性肺部细菌感染的磁热和超声激活纳米平台。
肺炎克雷伯菌感染的抗生素耐药性对治疗肺部炎症提出了重大挑战。为了克服组织渗透障碍和调节炎症反应,创新的治疗方法是必不可少的。本研究介绍了一种可吸入的纳米平台FexSy:Gd@PVP (FGP),该平台基于聚乙烯吡咯烷酮修饰的掺杂钆的非化学计量硫化铁纳米结构。该平台将协同磁超声激活与磁热疗法(mMHT)、声动力疗法(SDT)和气体疗法(GT)相结合,用于靶向细菌性肺部感染治疗。钆的加入通过增加磁性各向异性、缩小半导体带隙和丰富硫空位来增强磁热活化、改善磁热转换效率和声动力性能。FGP通过雾化吸入输送,无创地到达受感染的肺组织。暴露于交变磁场(AMF)和超声波(US)会产生局部的热量和活性氧(ROS),有效地消灭细菌。同时,AMF和US在酸性微环境中触发硫化氢(H2S)释放,通过抑制STAT3和ERK磷酸化,抑制TNF-α和IL-1β等炎症因子,从而减轻炎症。这种磁超声共激活的可吸入纳米平台为克服与细菌性肺部感染相关的临床挑战提供了强大的多模式治疗策略。意义声明:本研究介绍了一种可吸入的纳米平台,可有效治疗耐多药肺炎克雷伯菌肺部感染。通过集成磁热、声动力和气体疗法,该系统可以根除细菌并减少炎症。它使用掺钆的硫化铁纳米结构来增强热量、活性氧和硫化氢的产生,精确地针对肺部深部感染。与传统的抗生素不同,这种非侵入性的方法副作用最小,同时解决了细菌清除和炎症。这一创新策略为抗生素耐药感染提供了一个有希望的解决方案,并可能彻底改变呼吸道疾病的管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信