AI system for diagnosing mucosa-associated lymphoid tissue lymphoma and diffuse large B cell lymphoma using ImageNet and hematoxylin and eosin-stained specimens.

IF 2.2 Q2 MULTIDISCIPLINARY SCIENCES
PNAS nexus Pub Date : 2025-04-30 eCollection Date: 2025-05-01 DOI:10.1093/pnasnexus/pgaf137
Shuto Yamaguchi, Teijiro Isokawa, Nobuyuki Matsui, Naotake Kamiura, Tatsuaki Tsuruyama
{"title":"AI system for diagnosing mucosa-associated lymphoid tissue lymphoma and diffuse large B cell lymphoma using ImageNet and hematoxylin and eosin-stained specimens.","authors":"Shuto Yamaguchi, Teijiro Isokawa, Nobuyuki Matsui, Naotake Kamiura, Tatsuaki Tsuruyama","doi":"10.1093/pnasnexus/pgaf137","DOIUrl":null,"url":null,"abstract":"<p><p>AI-assisted morphological analysis using whole-slide images (WSIs) shows promise in supporting complex pathological diagnosis. However, the implementation in clinical settings is costly and demands extensive data storage. This study aimed to develop a compact, practical classification model using patch images selected by pathologists from representative disease areas under a microscope. To evaluate the limits of classification performance, we applied multiple pretraining strategies and convolutional neural networks (CNNs) specifically for the diagnosis of particularly challenging malignant lymphomas and their subtypes. The EfficientNet CNN, pretrained with ImageNet, exhibited the highest classification performance among the tested models. Our model achieved notable accuracy in a four-class classification (normal lymph node and three B cell lymphoma subtypes) using only hematoxylin and eosin-stained specimens (AUC = 0.87), comparable to results from immunohistochemical and genetic analyses. This finding suggests that the proposed model enables pathologists to independently prepare image data and easily access the algorithm and enhances diagnostic reliability while significantly reducing costs and time for additional tests, offering a practical and efficient diagnostic support tool for general medical facilities.</p>","PeriodicalId":74468,"journal":{"name":"PNAS nexus","volume":"4 5","pages":"pgaf137"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12069809/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PNAS nexus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/pnasnexus/pgaf137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

AI-assisted morphological analysis using whole-slide images (WSIs) shows promise in supporting complex pathological diagnosis. However, the implementation in clinical settings is costly and demands extensive data storage. This study aimed to develop a compact, practical classification model using patch images selected by pathologists from representative disease areas under a microscope. To evaluate the limits of classification performance, we applied multiple pretraining strategies and convolutional neural networks (CNNs) specifically for the diagnosis of particularly challenging malignant lymphomas and their subtypes. The EfficientNet CNN, pretrained with ImageNet, exhibited the highest classification performance among the tested models. Our model achieved notable accuracy in a four-class classification (normal lymph node and three B cell lymphoma subtypes) using only hematoxylin and eosin-stained specimens (AUC = 0.87), comparable to results from immunohistochemical and genetic analyses. This finding suggests that the proposed model enables pathologists to independently prepare image data and easily access the algorithm and enhances diagnostic reliability while significantly reducing costs and time for additional tests, offering a practical and efficient diagnostic support tool for general medical facilities.

使用ImageNet和苏木精、伊红染色标本诊断粘膜相关淋巴组织淋巴瘤和弥漫性大B细胞淋巴瘤的AI系统。
人工智能辅助形态学分析使用全幻灯片图像(wsi)显示了支持复杂病理诊断的希望。然而,在临床环境中实施是昂贵的,需要大量的数据存储。本研究旨在利用病理学家在显微镜下从代表性疾病区域选择的斑块图像,建立一个紧凑、实用的分类模型。为了评估分类性能的局限性,我们应用了多种预训练策略和卷积神经网络(cnn),专门用于诊断特别具有挑战性的恶性淋巴瘤及其亚型。使用ImageNet预训练的effentnet CNN在测试模型中表现出最高的分类性能。我们的模型仅使用苏木精和伊红染色的标本(AUC = 0.87)在四类分类(正常淋巴结和三种B细胞淋巴瘤亚型)中取得了显著的准确性,与免疫组织化学和遗传分析的结果相当。这一发现表明,所提出的模型使病理学家能够独立准备图像数据并轻松访问算法,提高了诊断可靠性,同时显着降低了额外测试的成本和时间,为一般医疗机构提供了实用高效的诊断支持工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信