[Foundation models in pathology].

Pathologie (Heidelberg, Germany) Pub Date : 2025-05-01 Epub Date: 2025-04-24 DOI:10.1007/s00292-025-01429-7
Frederick Klauschen, Jonas Dippel, Klaus-Robert Müller
{"title":"[Foundation models in pathology].","authors":"Frederick Klauschen, Jonas Dippel, Klaus-Robert Müller","doi":"10.1007/s00292-025-01429-7","DOIUrl":null,"url":null,"abstract":"<p><p>Foundation models prepare neural networks for applications in specific domains, such as speech applications or image analysis, through self-supervised pretraining. These models can be adapted for specific applications, such as histopathological diagnostics. While adaptation still requires supervised training, AI applications based on foundation models achieve significantly better prediction accuracy with fewer training data compared to conventional approaches. This article introduces the topic and provides an overview of foundation models in pathology.</p>","PeriodicalId":74402,"journal":{"name":"Pathologie (Heidelberg, Germany)","volume":"46 3","pages":"152-155"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathologie (Heidelberg, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00292-025-01429-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Foundation models prepare neural networks for applications in specific domains, such as speech applications or image analysis, through self-supervised pretraining. These models can be adapted for specific applications, such as histopathological diagnostics. While adaptation still requires supervised training, AI applications based on foundation models achieve significantly better prediction accuracy with fewer training data compared to conventional approaches. This article introduces the topic and provides an overview of foundation models in pathology.

[病理学基础模型]。
基础模型通过自监督预训练为特定领域的应用(如语音应用或图像分析)准备神经网络。这些模型可以适应特定的应用,如组织病理学诊断。虽然自适应仍然需要有监督的训练,但与传统方法相比,基于基础模型的人工智能应用可以用更少的训练数据实现更好的预测精度。这篇文章介绍了这个主题,并提供了病理学基础模型的概述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信