Mimicking large spot-scanning radiation fields for proton FLASH preclinical studies with a robotic motion platform.

Q4 Medicine
Precision Radiation Oncology Pub Date : 2024-10-24 eCollection Date: 2024-12-01 DOI:10.1002/pro6.1243
Fada Guan, Dadi Jiang, Xiaochun Wang, Ming Yang, Kiminori Iga, Yuting Li, Lawrence Bronk, Julianna Bronk, Liang Wang, Youming Guo, Narayan Sahoo, David R Grosshans, Albert C Koong, Xiaorong R Zhu, Radhe Mohan
{"title":"Mimicking large spot-scanning radiation fields for proton FLASH preclinical studies with a robotic motion platform.","authors":"Fada Guan, Dadi Jiang, Xiaochun Wang, Ming Yang, Kiminori Iga, Yuting Li, Lawrence Bronk, Julianna Bronk, Liang Wang, Youming Guo, Narayan Sahoo, David R Grosshans, Albert C Koong, Xiaorong R Zhu, Radhe Mohan","doi":"10.1002/pro6.1243","DOIUrl":null,"url":null,"abstract":"<p><p>Previously, a synchrotron-based horizontal proton beamline (87.2 MeV) was successfully commissioned to deliver radiation doses in FLASH and conventional dose rate modes to small fields and volumes. In this study, we developed a strategy to increase the effective radiation field size using a custom robotic motion platform to automatically shift the positions of biological samples. The beam was first broadened with a thin tungsten scatterer and shaped by customized brass collimators for irradiating cell/organoid cultures in 96-well plates (a 7-mm-diameter circle) or for irradiating mice (1-cm<sup>2</sup> square). Motion patterns of the robotic platform were written in G-code, with 9-mm spot spacing used for the 96-well plates and 10.6-mm spacing for the mice. The accuracy of target positioning was verified with a self-leveling laser system. The dose delivered in the experimental conditions was validated with EBT-XD film attached to the 96-well plate or the back of the mouse. Our film-measured dose profiles matched Monte Carlo calculations well (1D gamma pass rate >95% with the criteria of 2%/1 mm/2% dose threshold). The FLASH dose rates were 113.7 Gy/s for cell/organoid irradiation and 191.3 Gy/s for mouse irradiation. These promising results indicate that this robotic platform can be used to effectively increase the field size for preclinical experiments with proton FLASH.</p>","PeriodicalId":32406,"journal":{"name":"Precision Radiation Oncology","volume":"8 4","pages":"168-181"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934911/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pro6.1243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Previously, a synchrotron-based horizontal proton beamline (87.2 MeV) was successfully commissioned to deliver radiation doses in FLASH and conventional dose rate modes to small fields and volumes. In this study, we developed a strategy to increase the effective radiation field size using a custom robotic motion platform to automatically shift the positions of biological samples. The beam was first broadened with a thin tungsten scatterer and shaped by customized brass collimators for irradiating cell/organoid cultures in 96-well plates (a 7-mm-diameter circle) or for irradiating mice (1-cm2 square). Motion patterns of the robotic platform were written in G-code, with 9-mm spot spacing used for the 96-well plates and 10.6-mm spacing for the mice. The accuracy of target positioning was verified with a self-leveling laser system. The dose delivered in the experimental conditions was validated with EBT-XD film attached to the 96-well plate or the back of the mouse. Our film-measured dose profiles matched Monte Carlo calculations well (1D gamma pass rate >95% with the criteria of 2%/1 mm/2% dose threshold). The FLASH dose rates were 113.7 Gy/s for cell/organoid irradiation and 191.3 Gy/s for mouse irradiation. These promising results indicate that this robotic platform can be used to effectively increase the field size for preclinical experiments with proton FLASH.

用机器人运动平台模拟质子FLASH临床前研究的大点扫描辐射场。
此前,基于同步加速器的水平质子束线(87.2 MeV)已成功投入使用,以FLASH和传统剂量率模式向小区域和小体积输送辐射剂量。在这项研究中,我们开发了一种策略来增加有效辐射场的大小,使用定制的机器人运动平台来自动移动生物样品的位置。光束首先用薄钨散射器加宽,并通过定制的黄铜准直器形成形状,用于照射96孔板(直径7毫米的圆)或小鼠(1平方厘米的正方形)中的细胞/类器官培养物。机器人平台的运动模式用g代码编写,96孔板的点间距为9 mm,小鼠的点间距为10.6 mm。利用自找平激光系统验证了目标定位的精度。用EBT-XD膜贴于96孔板或小鼠背部,验证实验条件下给药剂量。我们的膜测量剂量曲线与蒙特卡罗计算结果吻合良好(1D伽马通过率>95%,标准为2%/1 mm/2%剂量阈值)。细胞/类器官辐照的FLASH剂量率为113.7 Gy/s,小鼠辐照的FLASH剂量率为191.3 Gy/s。这些有希望的结果表明,该机器人平台可以有效地增加质子FLASH临床前实验的场大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Precision Radiation Oncology
Precision Radiation Oncology Medicine-Oncology
CiteScore
1.20
自引率
0.00%
发文量
32
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信