Clinical Validation and Machine Learning Optimization of MyCog: A Self-Administered Cognitive Screener for Primary Care Settings.

Stephanie Ruth Young, Yusuke Shono, Katherina Hauner, Elizabeth M Dworak, Maxwell Mansolf, Laura Curtis, Julia Yoshino Benavente, Stephanie Batio, Richard C Gershon, Michael S Wolf, Cindy J Nowinski
{"title":"Clinical Validation and Machine Learning Optimization of MyCog: A Self-Administered Cognitive Screener for Primary Care Settings.","authors":"Stephanie Ruth Young, Yusuke Shono, Katherina Hauner, Elizabeth M Dworak, Maxwell Mansolf, Laura Curtis, Julia Yoshino Benavente, Stephanie Batio, Richard C Gershon, Michael S Wolf, Cindy J Nowinski","doi":"10.1101/2025.04.17.25325948","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Primary care presents an ideal opportunity for early detection of cognitive impairment, yet primary care clinics face barriers to cognitive screening. MyCog, an EHR-integrated tablet app that is self-administered during the rooming process of a primary care visit, streamlines the screening process to reduce barriers and encourage broader screening.</p><p><strong>Methods: </strong>We compared MyCog performance from 65 adults with diagnosed cognitive impairment to 80 cognitively normal adults, all aged 65+, recruited from clinical settings. We leveraged the consensus of five machine learning models (LASSO, Elastic Net, Random Forest, Bayesian Logistic Regression, and Gradient Boosting) to select consistently discriminative variables for the final detection algorithm. Performance was assessed at for two evidence-based thresholds (Youden's J and Top Left) with ROC AUC, sensitivity, specificity, and accuracy as the primary metrics.</p><p><strong>Results: </strong>All five models showed strong diagnostic performance, with ROC AUC values ranging from 0.839 to 0.876. The consensus modeling approach consistently identified the MyCog Picture Sequence Memory (PSM) exact match score and the MyCog Dimensional Change Card Sort (DCCS) overall rate-correct score as predictors of cognitive impairment. The final logistic regression achieved a robust AUC of 0.890. Depending on the cut point selected, sensitivity ranged from 0.723-0.785 (95% CI: 0.547-0.877), specificity 0.825-0.912 (95% CI: 0.716-0.954), accuracy 0.807-0.828 (95% CI: 0.731-0.869).</p><p><strong>Discussion: </strong>MyCog provides practical, accurate cognitive screening for primary care. The sub-7-minute self-administered assessment eliminates staffing requirements and automates evaluation, addressing screening barriers to facilitate earlier detection and improve clinical outcomes. The algorithm's robust performance and parsimony demonstrate clinical utility while maintaining diagnostic accuracy.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12047947/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.04.17.25325948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Primary care presents an ideal opportunity for early detection of cognitive impairment, yet primary care clinics face barriers to cognitive screening. MyCog, an EHR-integrated tablet app that is self-administered during the rooming process of a primary care visit, streamlines the screening process to reduce barriers and encourage broader screening.

Methods: We compared MyCog performance from 65 adults with diagnosed cognitive impairment to 80 cognitively normal adults, all aged 65+, recruited from clinical settings. We leveraged the consensus of five machine learning models (LASSO, Elastic Net, Random Forest, Bayesian Logistic Regression, and Gradient Boosting) to select consistently discriminative variables for the final detection algorithm. Performance was assessed at for two evidence-based thresholds (Youden's J and Top Left) with ROC AUC, sensitivity, specificity, and accuracy as the primary metrics.

Results: All five models showed strong diagnostic performance, with ROC AUC values ranging from 0.839 to 0.876. The consensus modeling approach consistently identified the MyCog Picture Sequence Memory (PSM) exact match score and the MyCog Dimensional Change Card Sort (DCCS) overall rate-correct score as predictors of cognitive impairment. The final logistic regression achieved a robust AUC of 0.890. Depending on the cut point selected, sensitivity ranged from 0.723-0.785 (95% CI: 0.547-0.877), specificity 0.825-0.912 (95% CI: 0.716-0.954), accuracy 0.807-0.828 (95% CI: 0.731-0.869).

Discussion: MyCog provides practical, accurate cognitive screening for primary care. The sub-7-minute self-administered assessment eliminates staffing requirements and automates evaluation, addressing screening barriers to facilitate earlier detection and improve clinical outcomes. The algorithm's robust performance and parsimony demonstrate clinical utility while maintaining diagnostic accuracy.

临床验证和机器学习优化MyCog:一个自我管理的认知筛选。
重要性:早期发现老年人认知障碍对于确定可逆性原因、控制症状和制定未来规划至关重要;然而,初级保健机构在实施有效的认知筛查方面面临重大障碍。目的:临床验证一种创新的自我给药、基于药片的认知筛查工具(“MyCog”,改编自NIH工具箱认知电池),并开发一种优化的评分算法,用于在初级保健就诊期间检测老年人的认知障碍。设计:在2021年夏季至2024年秋季进行横断面临床验证研究,使用多种机器学习方法比较受损和非受损参与者的认知表现,以确定损伤的最佳预测因素。设置:学术医疗中心和以社区为基础的普通人群招募。参与者:248名65岁及以上的成年人,包括70名临床诊断为认知障碍(MCI或痴呆)的参与者,81名临床确认认知完好的参与者,97名来自普通人群。参与者主要是白人(88%),教育背景不同,平均年龄为76.3岁(SD = 6.9)。主要结果和测量:敏感性、特异性和受试者工作特征曲线下面积(ROC AUC)是评估模型拟合的主要指标,用于对已知组的认知障碍进行分类,从mygg图片序列记忆和维度变化卡片排序任务。结果:在9个机器学习模型类别中,图片序列记忆精确匹配得分和维度变化卡排序率正确得分被确定为认知障碍的最可靠预测因子。最终优化模型的灵敏度为82.5%(自举95% CI[0.733, 0.913]),特异性为76.8%(自举95% CI [0.709, 0.828]), ROC AUC为0.892,与传统的长形式认知筛查措施相当,且需要不到7分钟的自我管理时间。结论和相关性:mygg在检测老年人认知障碍方面具有很强的诊断准确性,其简约模型侧重于情景记忆和执行功能。作为一种可整合到电子健康记录中的自我管理的简短筛查工具,MyCog解决了初级保健机构中认知筛查的主要障碍,这可能有助于提高筛查和早期检出率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信