Structural basis of human Nav1.5 gating mechanisms.

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Rupam Biswas, Ana Laura López-Serrano, Apoorva Purohit, Angelina Ramirez-Navarro, Hsiang-Ling Huang, Giovanna Grandinetti, Xiaolin Cheng, Sarah M Heissler, Isabelle Deschênes, Krishna Chinthalapudi
{"title":"Structural basis of human Na<sub>v</sub>1.5 gating mechanisms.","authors":"Rupam Biswas, Ana Laura López-Serrano, Apoorva Purohit, Angelina Ramirez-Navarro, Hsiang-Ling Huang, Giovanna Grandinetti, Xiaolin Cheng, Sarah M Heissler, Isabelle Deschênes, Krishna Chinthalapudi","doi":"10.1073/pnas.2416181122","DOIUrl":null,"url":null,"abstract":"<p><p>Voltage-gated Na<sub>v</sub>1.5 channels are central to the generation and propagation of cardiac action potentials. Aberrations in their function are associated with a wide spectrum of cardiac diseases including arrhythmias and heart failure. Despite decades of progress in Na<sub>v</sub>1.5 biology, the lack of structural insights into intracellular regions has hampered our understanding of its gating mechanisms. Here, we present two cryo-EM structures of human Na<sub>v</sub>1.5 in open states, revealing sequential conformational changes in gating charges of the voltage-sensing domains (VSDs) and several intracellular regions. Despite the channel being in the open state, these structures show repositioning, but no dislodging of the IFM motif in the receptor site. Molecular dynamics analyses show our structures with CTD conduct Na<sup>+</sup> ions. Notably, our structural findings highlight a dynamic C-terminal domain (CTD) and III-IV linker interaction, which regulates the conformation of VSDs and pore opening. Electrophysiological studies confirm that disrupting this interaction alters fast inactivation of Na<sub>v</sub>1.5. Together, our structure-function studies establish a foundation for understanding the gating mechanisms of Na<sub>v</sub>1.5 and the mechanisms underlying CTD-related channelopathies.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"122 20","pages":"e2416181122"},"PeriodicalIF":9.4000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2416181122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Voltage-gated Nav1.5 channels are central to the generation and propagation of cardiac action potentials. Aberrations in their function are associated with a wide spectrum of cardiac diseases including arrhythmias and heart failure. Despite decades of progress in Nav1.5 biology, the lack of structural insights into intracellular regions has hampered our understanding of its gating mechanisms. Here, we present two cryo-EM structures of human Nav1.5 in open states, revealing sequential conformational changes in gating charges of the voltage-sensing domains (VSDs) and several intracellular regions. Despite the channel being in the open state, these structures show repositioning, but no dislodging of the IFM motif in the receptor site. Molecular dynamics analyses show our structures with CTD conduct Na+ ions. Notably, our structural findings highlight a dynamic C-terminal domain (CTD) and III-IV linker interaction, which regulates the conformation of VSDs and pore opening. Electrophysiological studies confirm that disrupting this interaction alters fast inactivation of Nav1.5. Together, our structure-function studies establish a foundation for understanding the gating mechanisms of Nav1.5 and the mechanisms underlying CTD-related channelopathies.

人类Nav1.5门控机制的结构基础。
电压门控的Nav1.5通道是心脏动作电位产生和传播的核心。其功能异常与包括心律失常和心力衰竭在内的多种心脏疾病有关。尽管几十年来在Nav1.5生物学方面取得了进展,但缺乏对细胞内区域结构的了解阻碍了我们对其门控机制的理解。在这里,我们展示了人类Nav1.5在开放状态下的两个低温电镜结构,揭示了电压感应域(VSDs)和几个细胞内区域的门控电荷的顺序构象变化。尽管通道处于开放状态,但这些结构显示重新定位,但受体位点的IFM基序没有移位。分子动力学分析表明我们的结构具有CTD导电Na+离子。值得注意的是,我们的结构发现强调了动态c端结构域(CTD)和III-IV连接体的相互作用,这调节了vsd的构象和孔隙打开。电生理学研究证实,破坏这种相互作用会改变Nav1.5的快速失活。总之,我们的结构-功能研究为理解Nav1.5的门控机制和ctd相关通道病变的机制奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信