Mitochondrial DNA variant detection in over 6,500 rare disease families by the systematic analysis of exome and genome sequencing data resolves undiagnosed cases.

IF 3.3 Q2 GENETICS & HEREDITY
Sarah L Stenton, Kristen Laricchia, Nicole J Lake, Sushma Chaluvadi, Vijay Ganesh, Stephanie DiTroia, Ikeoluwa Osei-Owusu, Lynn Pais, Emily O'Heir, Christina Austin-Tse, Melanie O'Leary, Mayada Abu Shanap, Chelsea Barrows, Seth Berger, Carsten G Bönnemann, Kinga M Bujakowska, Dean R Campagna, Alison G Compton, Sandra Donkervoort, Mark D Fleming, Lyndon Gallacher, Joseph G Gleeson, Goknur Haliloglu, Eric A Pierce, Emily M Place, Vijay G Sankaran, Akiko Shimamura, Zornitza Stark, Tiong Yang Tan, David R Thorburn, Susan M White, Maha S Zaki, Eric Vilain, Monkol Lek, Heidi L Rehm, Anne O'Donnell-Luria
{"title":"Mitochondrial DNA variant detection in over 6,500 rare disease families by the systematic analysis of exome and genome sequencing data resolves undiagnosed cases.","authors":"Sarah L Stenton, Kristen Laricchia, Nicole J Lake, Sushma Chaluvadi, Vijay Ganesh, Stephanie DiTroia, Ikeoluwa Osei-Owusu, Lynn Pais, Emily O'Heir, Christina Austin-Tse, Melanie O'Leary, Mayada Abu Shanap, Chelsea Barrows, Seth Berger, Carsten G Bönnemann, Kinga M Bujakowska, Dean R Campagna, Alison G Compton, Sandra Donkervoort, Mark D Fleming, Lyndon Gallacher, Joseph G Gleeson, Goknur Haliloglu, Eric A Pierce, Emily M Place, Vijay G Sankaran, Akiko Shimamura, Zornitza Stark, Tiong Yang Tan, David R Thorburn, Susan M White, Maha S Zaki, Eric Vilain, Monkol Lek, Heidi L Rehm, Anne O'Donnell-Luria","doi":"10.1016/j.xhgg.2025.100441","DOIUrl":null,"url":null,"abstract":"<p><p>Variants in the mitochondrial genome (mtDNA) cause a diverse collection of mitochondrial diseases and have extensive phenotypic overlap with Mendelian diseases encoded on the nuclear genome. The mtDNA is not always specifically evaluated in patients with suspected Mendelian disease, resulting in overlooked diagnostic variants. Here, we analyzed a cohort of 6,660 rare disease families (5,625 genetically undiagnosed [84%]) from the Genomics Research to Elucidate the Genetics of Rare diseases (GREGoR) Consortium, as well as other rare disease cohorts. Using dedicated pipelines to address the technical challenges posed by the mtDNA-circular genome, variant heteroplasmy, and nuclear misalignment-we called single nucleotide variants, small insertions/deletions, and large mtDNA deletions from exome and/or genome sequencing data, in addition to RNA sequencing data when available. Diagnostic mtDNA variants were identified in 10 previously genetically undiagnosed families (1 large deletion, 8 reported pathogenic variants, and 1 previously unreported likely pathogenic variant), as well as candidate diagnostic variants in a further 11 undiagnosed families. In one additional undiagnosed proband, detection of >900 heteroplasmic variants provided functional evidence of pathogenicity to a de novo variant in the nuclear gene POLG (DNA polymerase gamma), responsible for mtDNA replication and repair. Overall, mtDNA variant calling from data generated by exome and genome sequencing-primarily for nuclear variant analysis-resulted in a genetic diagnosis for 0.2% of undiagnosed families affected by a broad range of rare diseases, as well as the identification of additional promising candidates in 0.2%.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":"6 3","pages":"100441"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HGG Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xhgg.2025.100441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Variants in the mitochondrial genome (mtDNA) cause a diverse collection of mitochondrial diseases and have extensive phenotypic overlap with Mendelian diseases encoded on the nuclear genome. The mtDNA is not always specifically evaluated in patients with suspected Mendelian disease, resulting in overlooked diagnostic variants. Here, we analyzed a cohort of 6,660 rare disease families (5,625 genetically undiagnosed [84%]) from the Genomics Research to Elucidate the Genetics of Rare diseases (GREGoR) Consortium, as well as other rare disease cohorts. Using dedicated pipelines to address the technical challenges posed by the mtDNA-circular genome, variant heteroplasmy, and nuclear misalignment-we called single nucleotide variants, small insertions/deletions, and large mtDNA deletions from exome and/or genome sequencing data, in addition to RNA sequencing data when available. Diagnostic mtDNA variants were identified in 10 previously genetically undiagnosed families (1 large deletion, 8 reported pathogenic variants, and 1 previously unreported likely pathogenic variant), as well as candidate diagnostic variants in a further 11 undiagnosed families. In one additional undiagnosed proband, detection of >900 heteroplasmic variants provided functional evidence of pathogenicity to a de novo variant in the nuclear gene POLG (DNA polymerase gamma), responsible for mtDNA replication and repair. Overall, mtDNA variant calling from data generated by exome and genome sequencing-primarily for nuclear variant analysis-resulted in a genetic diagnosis for 0.2% of undiagnosed families affected by a broad range of rare diseases, as well as the identification of additional promising candidates in 0.2%.

通过对外显子组和基因组测序数据的系统分析,在6500多个罕见疾病家族中进行线粒体DNA变异检测,解决了未诊断的病例。
线粒体基因组(mtDNA)的变异引起多种线粒体疾病,并与核基因组编码的孟德尔疾病具有广泛的表型重叠。在疑似孟德尔病的患者中,mtDNA并不总是被专门评估,导致被忽视的诊断变异。在这里,我们分析了来自基因组学研究阐明罕见病遗传学(GREGoR)联盟以及其他罕见病队列的6660个罕见病家族(5625个遗传未确诊[84%])。使用专用管道来解决mtDNA-环基因组,变异异质性和核错配带来的技术挑战-我们将外显子组和/或基因组测序数据中的单核苷酸变异,小插入/缺失和大mtDNA缺失称为外显子组和/或基因组测序数据,以及可用的RNA测序数据。诊断性mtDNA变异在10个先前未被遗传诊断的家族中发现(1个大缺失,8个报告的致病变异,1个以前未报告的可能致病变异),以及另外11个未被诊断的家族中的候选诊断变异。在另一个未确诊的先证中,检测到bbb900异质变异为核基因POLG (DNA聚合酶γ)的新生变异致病性提供了功能证据,该基因负责mtDNA的复制和修复。总的来说,外显子组和基因组测序产生的mtDNA变异召唤数据(主要用于核变异分析)导致0.2%的受广泛罕见疾病影响的未诊断家庭的遗传诊断,以及0.2%的其他有希望的候选者的鉴定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
HGG Advances
HGG Advances Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
4.30
自引率
4.50%
发文量
69
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信