Ning Wang, Aifang Wang, Hejia Sun, Luohong Zhang, Yonghong Liu
{"title":"The mechanism and prospect of exogenous promoters enhancement Anammox at low temperatures: a review.","authors":"Ning Wang, Aifang Wang, Hejia Sun, Luohong Zhang, Yonghong Liu","doi":"10.1007/s11274-025-04358-y","DOIUrl":null,"url":null,"abstract":"<p><p>The anaerobic ammonium oxidation (Anammox) process has revolutionized nitrogen removal in wastewater treatment with its exceptional cost-effectiveness and carbon-neutral characteristics. Nevertheless, the intrinsic psychrophilic sensitivity of anaerobic ammonium-oxidizing bacteria (AnAOB), particularly their rapid metabolic suppression below 15 °C, poses a critical bottleneck for sustainable implementation in cold-climate regions. Recent advancements in exogenous stimulation strategies offer promising solutions to this challenge, with particular emphasis on iron supplementation and cryogenic activity regulators (CARs) due to their non-invasive operational compatibility and mechanistic versatility. This review provides a comprehensive analysis of the operational performance, functional enzyme activity, and microbial abundance associated with the use of iron and CARs as exogenous promoters in low-temperature Anammox system. Building upon current limitations in single-factor approaches, the dual-modulation strategy integrating iron-chelated CARs complexes are proposed, which leverages the complementary benefits of iron-mediated metabolic activation and CARs-induced cryoprotection, potentially enabling year-round Anammox operation under low temperatures. This mechanistic-to-applied review provides critical insights for advancing Anammox implementation in circular economy-driven wastewater infrastructures under climate change scenarios.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 5","pages":"145"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-025-04358-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The anaerobic ammonium oxidation (Anammox) process has revolutionized nitrogen removal in wastewater treatment with its exceptional cost-effectiveness and carbon-neutral characteristics. Nevertheless, the intrinsic psychrophilic sensitivity of anaerobic ammonium-oxidizing bacteria (AnAOB), particularly their rapid metabolic suppression below 15 °C, poses a critical bottleneck for sustainable implementation in cold-climate regions. Recent advancements in exogenous stimulation strategies offer promising solutions to this challenge, with particular emphasis on iron supplementation and cryogenic activity regulators (CARs) due to their non-invasive operational compatibility and mechanistic versatility. This review provides a comprehensive analysis of the operational performance, functional enzyme activity, and microbial abundance associated with the use of iron and CARs as exogenous promoters in low-temperature Anammox system. Building upon current limitations in single-factor approaches, the dual-modulation strategy integrating iron-chelated CARs complexes are proposed, which leverages the complementary benefits of iron-mediated metabolic activation and CARs-induced cryoprotection, potentially enabling year-round Anammox operation under low temperatures. This mechanistic-to-applied review provides critical insights for advancing Anammox implementation in circular economy-driven wastewater infrastructures under climate change scenarios.
期刊介绍:
World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology.
Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions.
Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories:
· Virology
· Simple isolation of microbes from local sources
· Simple descriptions of an environment or reports on a procedure
· Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism
· Data reporting on host response to microbes
· Optimization of a procedure
· Description of the biological effects of not fully identified compounds or undefined extracts of natural origin
· Data on not fully purified enzymes or procedures in which they are applied
All articles published in the Journal are independently refereed.