Inferring gene regulatory networks by hypergraph generative model.

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS
Cell Reports Methods Pub Date : 2025-04-21 Epub Date: 2025-04-11 DOI:10.1016/j.crmeth.2025.101026
Guangxin Su, Hanchen Wang, Ying Zhang, Marc R Wilkins, Pablo F Canete, Di Yu, Yang Yang, Wenjie Zhang
{"title":"Inferring gene regulatory networks by hypergraph generative model.","authors":"Guangxin Su, Hanchen Wang, Ying Zhang, Marc R Wilkins, Pablo F Canete, Di Yu, Yang Yang, Wenjie Zhang","doi":"10.1016/j.crmeth.2025.101026","DOIUrl":null,"url":null,"abstract":"<p><p>We present hypergraph variational autoencoder (HyperG-VAE), a Bayesian deep generative model that leverages hypergraph representation to model single-cell RNA sequencing (scRNA-seq) data. The model features a cell encoder with a structural equation model to account for cellular heterogeneity and construct gene regulatory networks (GRNs) alongside a gene encoder using hypergraph self-attention to identify gene modules. The synergistic optimization of encoders via a decoder improves GRN inference, single-cell clustering, and data visualization, as validated by benchmarks. HyperG-VAE effectively uncovers gene regulation patterns and demonstrates robustness in downstream analyses, as shown in B cell development data from bone marrow. Gene set enrichment analysis of overlapping genes in predicted GRNs confirms the gene encoder's role in refining GRN inference. Offering an efficient solution for scRNA-seq analysis and GRN construction, HyperG-VAE also holds the potential for extending GRN modeling to temporal and multimodal single-cell omics.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":"5 4","pages":"101026"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2025.101026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We present hypergraph variational autoencoder (HyperG-VAE), a Bayesian deep generative model that leverages hypergraph representation to model single-cell RNA sequencing (scRNA-seq) data. The model features a cell encoder with a structural equation model to account for cellular heterogeneity and construct gene regulatory networks (GRNs) alongside a gene encoder using hypergraph self-attention to identify gene modules. The synergistic optimization of encoders via a decoder improves GRN inference, single-cell clustering, and data visualization, as validated by benchmarks. HyperG-VAE effectively uncovers gene regulation patterns and demonstrates robustness in downstream analyses, as shown in B cell development data from bone marrow. Gene set enrichment analysis of overlapping genes in predicted GRNs confirms the gene encoder's role in refining GRN inference. Offering an efficient solution for scRNA-seq analysis and GRN construction, HyperG-VAE also holds the potential for extending GRN modeling to temporal and multimodal single-cell omics.

利用超图生成模型推断基因调控网络。
我们提出了超图变分自编码器(hypergraph variational autoencoder, HyperG-VAE),这是一种贝叶斯深度生成模型,利用超图表示来模拟单细胞RNA测序(scRNA-seq)数据。该模型具有一个具有结构方程模型的细胞编码器,用于解释细胞异质性和构建基因调控网络(grn),以及一个使用超图自注意识别基因模块的基因编码器。编码器通过解码器的协同优化改进了GRN推理、单细胞聚类和数据可视化,经基准测试验证。HyperG-VAE有效地揭示了基因调控模式,并在下游分析中证明了稳健性,如骨髓B细胞发育数据所示。预测GRN中重叠基因的基因集富集分析证实了基因编码器在改进GRN推断中的作用。HyperG-VAE为scRNA-seq分析和GRN构建提供了一个有效的解决方案,它还具有将GRN建模扩展到时间和多模态单细胞组学的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信