Show Me Some ID: A Universal Identification Program for Structural Equation Models.

IF 2.9 2区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Psychometrika Pub Date : 2025-04-24 DOI:10.1017/psy.2025.19
Michael D Hunter, Robert M Kirkpatrick, Michael C Neale
{"title":"Show Me Some ID: A Universal Identification Program for Structural Equation Models.","authors":"Michael D Hunter, Robert M Kirkpatrick, Michael C Neale","doi":"10.1017/psy.2025.19","DOIUrl":null,"url":null,"abstract":"<p><p>With models and research designs ever increasing in complexity, the foundational question of model identification is more important than ever. The determination of whether or not a model can be fit at all or fit to some particular data set is the essence of model identification. In this article, we pull from previously published work on data-independent model identification applicable to a broad set of structural equation models, and extend it further to include extremely flexible exogenous covariate effects and also to include data-dependent empirical model identification. For illustrative purposes, we apply this model identification solution to several small examples for which the answer is already known, including a real data example from the National Longitudinal Survey of Youth; however, the method applies similarly to models that are far from simple to comprehend. The solution is implemented in the open-source OpenMx package in R.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1-24"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1017/psy.2025.19","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

With models and research designs ever increasing in complexity, the foundational question of model identification is more important than ever. The determination of whether or not a model can be fit at all or fit to some particular data set is the essence of model identification. In this article, we pull from previously published work on data-independent model identification applicable to a broad set of structural equation models, and extend it further to include extremely flexible exogenous covariate effects and also to include data-dependent empirical model identification. For illustrative purposes, we apply this model identification solution to several small examples for which the answer is already known, including a real data example from the National Longitudinal Survey of Youth; however, the method applies similarly to models that are far from simple to comprehend. The solution is implemented in the open-source OpenMx package in R.

Show Me Some ID:结构方程模型的通用识别程序。
随着模型和研究设计的复杂性不断增加,模型识别的基本问题比以往任何时候都更加重要。确定一个模型是否可以完全拟合或是否适合某些特定的数据集是模型识别的本质。在本文中,我们借鉴了先前发表的适用于广泛结构方程模型的数据独立模型识别工作,并将其进一步扩展到包括极其灵活的外生协变量效应以及数据依赖的经验模型识别。为了说明问题,我们将此模型识别解决方案应用于几个答案已知的小示例,包括来自全国青年纵向调查的真实数据示例;然而,该方法同样适用于那些远不容易理解的模型。该解决方案是在R的开源OpenMx包中实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Psychometrika
Psychometrika 数学-数学跨学科应用
CiteScore
4.40
自引率
10.00%
发文量
72
审稿时长
>12 weeks
期刊介绍: The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信