Amal Abbas, Rodolfo Mundaca-Uribe, Liangfang Zhang, Joseph Wang
{"title":"Robotic micromotors transforming oral drug administration.","authors":"Amal Abbas, Rodolfo Mundaca-Uribe, Liangfang Zhang, Joseph Wang","doi":"10.1016/j.tibtech.2025.03.011","DOIUrl":null,"url":null,"abstract":"<p><p>Oral medication is preferred for its convenience; however, efficient drug delivery remains challenging due to issues such as poor solubility, and absorption caused by mucosal barriers, which result in low bioavailability. In this review, we discuss new strategies integrating robotic capabilities into oral formulations to enhance drug delivery. Such robotic pill systems leverage the efficient propulsion of biological and synthetic micromotors to accelerate pill disintegration and overcome mucosal barriers, increasing bioavailability with lower doses and fewer side effects. In addition, advanced bioinspired robotic capsules, including microneedles, microinjectors, and microjet systems, offer enhanced macromolecule bioavailability comparable with that achieved with subcutaneous injections. The future of precision medicine lies in encapsulating diverse micromotors (with unique capabilities) within pharmaceutical carriers, offering groundbreaking opportunities for enhanced therapeutic interventions.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":"2197-2213"},"PeriodicalIF":14.9000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tibtech.2025.03.011","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Oral medication is preferred for its convenience; however, efficient drug delivery remains challenging due to issues such as poor solubility, and absorption caused by mucosal barriers, which result in low bioavailability. In this review, we discuss new strategies integrating robotic capabilities into oral formulations to enhance drug delivery. Such robotic pill systems leverage the efficient propulsion of biological and synthetic micromotors to accelerate pill disintegration and overcome mucosal barriers, increasing bioavailability with lower doses and fewer side effects. In addition, advanced bioinspired robotic capsules, including microneedles, microinjectors, and microjet systems, offer enhanced macromolecule bioavailability comparable with that achieved with subcutaneous injections. The future of precision medicine lies in encapsulating diverse micromotors (with unique capabilities) within pharmaceutical carriers, offering groundbreaking opportunities for enhanced therapeutic interventions.
期刊介绍:
Trends in Biotechnology publishes reviews and perspectives on the applied biological sciences, focusing on useful science applied to, derived from, or inspired by living systems.
The major themes that TIBTECH is interested in include:
Bioprocessing (biochemical engineering, applied enzymology, industrial biotechnology, biofuels, metabolic engineering)
Omics (genome editing, single-cell technologies, bioinformatics, synthetic biology)
Materials and devices (bionanotechnology, biomaterials, diagnostics/imaging/detection, soft robotics, biosensors/bioelectronics)
Therapeutics (biofabrication, stem cells, tissue engineering and regenerative medicine, antibodies and other protein drugs, drug delivery)
Agroenvironment (environmental engineering, bioremediation, genetically modified crops, sustainable development).