Liam P Kelley, Song-Hua Hu, Sarah A Boswell, Peter K Sorger, Alison E Ringel, Marcia C Haigis
{"title":"Integrated analysis of transcriptional and metabolic responses to mitochondrial stress.","authors":"Liam P Kelley, Song-Hua Hu, Sarah A Boswell, Peter K Sorger, Alison E Ringel, Marcia C Haigis","doi":"10.1016/j.crmeth.2025.101027","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial stress arises from a variety of sources, including mutations to mitochondrial DNA, the generation of reactive oxygen species, and an insufficient supply of oxygen or fuel. Mitochondrial stress induces a range of dedicated responses that repair damage and restore mitochondrial health. However, a systematic characterization of transcriptional and metabolic signatures induced by distinct types of mitochondrial stress is lacking. Here, we defined how primary human fibroblasts respond to a panel of mitochondrial inhibitors to trigger adaptive stress responses. Using metabolomic and transcriptomic analyses, we established integrated signatures of mitochondrial stress. We developed a tool, stress quantification using integrated datasets (SQUID), to deconvolute mitochondrial stress signatures from existing datasets. Using SQUID, we profiled mitochondrial stress in The Cancer Genome Atlas (TCGA) PanCancer Atlas, identifying a signature of pyruvate import deficiency in IDH1-mutant glioma. Thus, this study defines a tool to identify specific mitochondrial stress signatures, which may be applied to a range of systems.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":"5 4","pages":"101027"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2025.101027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondrial stress arises from a variety of sources, including mutations to mitochondrial DNA, the generation of reactive oxygen species, and an insufficient supply of oxygen or fuel. Mitochondrial stress induces a range of dedicated responses that repair damage and restore mitochondrial health. However, a systematic characterization of transcriptional and metabolic signatures induced by distinct types of mitochondrial stress is lacking. Here, we defined how primary human fibroblasts respond to a panel of mitochondrial inhibitors to trigger adaptive stress responses. Using metabolomic and transcriptomic analyses, we established integrated signatures of mitochondrial stress. We developed a tool, stress quantification using integrated datasets (SQUID), to deconvolute mitochondrial stress signatures from existing datasets. Using SQUID, we profiled mitochondrial stress in The Cancer Genome Atlas (TCGA) PanCancer Atlas, identifying a signature of pyruvate import deficiency in IDH1-mutant glioma. Thus, this study defines a tool to identify specific mitochondrial stress signatures, which may be applied to a range of systems.