Stochastic forest transition model dynamics and parameter estimation via deep learning.

IF 2.6 4区 工程技术 Q1 Mathematics
Satoshi Kumabe, Tianyu Song, Tôn Việt Tạ
{"title":"Stochastic forest transition model dynamics and parameter estimation via deep learning.","authors":"Satoshi Kumabe, Tianyu Song, Tôn Việt Tạ","doi":"10.3934/mbe.2025046","DOIUrl":null,"url":null,"abstract":"<p><p>Forest transitions, characterized by dynamic shifts between forest, agricultural, and abandoned lands, are complex phenomena. This study developed a stochastic differential equation model to capture the intricate dynamics of these transitions. We established the existence of global positive solutions for the model and conducted numerical analyses to assess the impact of model parameters on deforestation incentives. To address the challenge of parameter estimation, we proposed a novel deep learning approach that estimates all model parameters from a single sample containing time-series observations of forest and agricultural land proportions. This innovative approach enables us to understand forest transition dynamics and deforestation trends at any future time.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"22 5","pages":"1243-1262"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2025046","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Forest transitions, characterized by dynamic shifts between forest, agricultural, and abandoned lands, are complex phenomena. This study developed a stochastic differential equation model to capture the intricate dynamics of these transitions. We established the existence of global positive solutions for the model and conducted numerical analyses to assess the impact of model parameters on deforestation incentives. To address the challenge of parameter estimation, we proposed a novel deep learning approach that estimates all model parameters from a single sample containing time-series observations of forest and agricultural land proportions. This innovative approach enables us to understand forest transition dynamics and deforestation trends at any future time.

基于深度学习的随机森林过渡模型动力学及参数估计。
森林转型是一种复杂的现象,其特征是森林、农业和撂荒地之间的动态变化。本研究开发了一个随机微分方程模型来捕捉这些转变的复杂动力学。我们建立了模型的全局正解的存在性,并进行了数值分析,以评估模型参数对森林砍伐激励的影响。为了解决参数估计的挑战,我们提出了一种新的深度学习方法,该方法从包含森林和农业用地比例的时间序列观测的单个样本中估计所有模型参数。这种创新方法使我们能够了解未来任何时候的森林转型动态和森林砍伐趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Biosciences and Engineering
Mathematical Biosciences and Engineering 工程技术-数学跨学科应用
CiteScore
3.90
自引率
7.70%
发文量
586
审稿时长
>12 weeks
期刊介绍: Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing. MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信