{"title":"Stochastic forest transition model dynamics and parameter estimation via deep learning.","authors":"Satoshi Kumabe, Tianyu Song, Tôn Việt Tạ","doi":"10.3934/mbe.2025046","DOIUrl":null,"url":null,"abstract":"<p><p>Forest transitions, characterized by dynamic shifts between forest, agricultural, and abandoned lands, are complex phenomena. This study developed a stochastic differential equation model to capture the intricate dynamics of these transitions. We established the existence of global positive solutions for the model and conducted numerical analyses to assess the impact of model parameters on deforestation incentives. To address the challenge of parameter estimation, we proposed a novel deep learning approach that estimates all model parameters from a single sample containing time-series observations of forest and agricultural land proportions. This innovative approach enables us to understand forest transition dynamics and deforestation trends at any future time.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"22 5","pages":"1243-1262"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2025046","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Forest transitions, characterized by dynamic shifts between forest, agricultural, and abandoned lands, are complex phenomena. This study developed a stochastic differential equation model to capture the intricate dynamics of these transitions. We established the existence of global positive solutions for the model and conducted numerical analyses to assess the impact of model parameters on deforestation incentives. To address the challenge of parameter estimation, we proposed a novel deep learning approach that estimates all model parameters from a single sample containing time-series observations of forest and agricultural land proportions. This innovative approach enables us to understand forest transition dynamics and deforestation trends at any future time.
期刊介绍:
Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing.
MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).