Chao J Liu, William Ammon, Robert J Jones, Jackson C Nolan, Dayang Gong, Chiara Maffei, Nathan Blanke, Brian L Edlow, Jean C Augustinack, Caroline Magnain, Anastasia Yendiki, Martin Villiger, Bruce Fischl, Hui Wang
{"title":"Three-dimensional fiber orientation mapping of ex vivo human brain at micrometer resolution.","authors":"Chao J Liu, William Ammon, Robert J Jones, Jackson C Nolan, Dayang Gong, Chiara Maffei, Nathan Blanke, Brian L Edlow, Jean C Augustinack, Caroline Magnain, Anastasia Yendiki, Martin Villiger, Bruce Fischl, Hui Wang","doi":"10.1038/s44303-025-00074-2","DOIUrl":null,"url":null,"abstract":"<p><p>The accurate measurement of three-dimensional (3D) fiber orientation in the brain is crucial for reconstructing fiber pathways and studying their involvement in neurological diseases. Comprehensive reconstruction of axonal tracts and small fascicles requires high-resolution technology beyond the ability of current in vivo imaging (e.g., diffusion magnetic resonance imaging). Optical imaging methods such as polarization-sensitive optical coherence tomography (PS-OCT) can quantify fiber orientation at micrometer resolution but have been limited to two-dimensional in-plane orientation, preventing the comprehensive study of connectivity in 3D. In this work we present a novel method to quantify volumetric 3D orientation in full angular space with PS-OCT in postmortem human brain tissues. We measure the polarization contrasts of the brain sample from two illumination angles of 0 and 15° and apply a computational method that yields the 3D optic axis orientation and true birefringence. We further present 3D fiber orientation maps of entire coronal cerebrum sections and brainstem with 10 μm in-plane resolution, revealing unprecedented details of fiber configurations. We envision that our method will open a promising avenue towards large-scale 3D fiber axis mapping in the human brain as well as other complex fibrous tissues at microscopic level.</p>","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":"3 1","pages":"13"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11978517/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44303-025-00074-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The accurate measurement of three-dimensional (3D) fiber orientation in the brain is crucial for reconstructing fiber pathways and studying their involvement in neurological diseases. Comprehensive reconstruction of axonal tracts and small fascicles requires high-resolution technology beyond the ability of current in vivo imaging (e.g., diffusion magnetic resonance imaging). Optical imaging methods such as polarization-sensitive optical coherence tomography (PS-OCT) can quantify fiber orientation at micrometer resolution but have been limited to two-dimensional in-plane orientation, preventing the comprehensive study of connectivity in 3D. In this work we present a novel method to quantify volumetric 3D orientation in full angular space with PS-OCT in postmortem human brain tissues. We measure the polarization contrasts of the brain sample from two illumination angles of 0 and 15° and apply a computational method that yields the 3D optic axis orientation and true birefringence. We further present 3D fiber orientation maps of entire coronal cerebrum sections and brainstem with 10 μm in-plane resolution, revealing unprecedented details of fiber configurations. We envision that our method will open a promising avenue towards large-scale 3D fiber axis mapping in the human brain as well as other complex fibrous tissues at microscopic level.