Fast and Long-Term Super-Resolution Imaging of Endoplasmic Reticulum Nano-structural Dynamics in Living Cells Using a Neural Network.

IF 11.1 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Small Science Pub Date : 2024-11-08 eCollection Date: 2025-01-01 DOI:10.1002/smsc.202400385
Johanna V Rahm, Ashwin Balakrishnan, Maren Wehrheim, Alexandra Kaminer, Marius Glogger, Laurell F Kessler, Matthias Kaschube, Hans-Dieter Barth, Mike Heilemann
{"title":"Fast and Long-Term Super-Resolution Imaging of Endoplasmic Reticulum Nano-structural Dynamics in Living Cells Using a Neural Network.","authors":"Johanna V Rahm, Ashwin Balakrishnan, Maren Wehrheim, Alexandra Kaminer, Marius Glogger, Laurell F Kessler, Matthias Kaschube, Hans-Dieter Barth, Mike Heilemann","doi":"10.1002/smsc.202400385","DOIUrl":null,"url":null,"abstract":"<p><p>Stimulated emission depletion (STED) microscopy is a super-resolution technique that surpasses the diffraction limit and has contributed to the study of dynamic processes in living cells. However, high laser intensities induce fluorophore photobleaching and sample phototoxicity, limiting the number of fluorescence images obtainable from a living cell. Herein, these challenges are addressed by using ultra-low irradiation intensities and a neural network for image restoration, enabling extensive imaging of single living cells. The endoplasmic reticulum (ER) is chosen as the target structure due to its dynamic nature over short and long timescales. The reduced irradiation intensity combined with denoising permits continuous ER dynamics observation in living cells for up to 7 h with a temporal resolution of seconds. This allows for quantitative analysis of ER structural features over short (seconds) and long (hours) timescales within the same cell, and enabled fast 3D live-cell STED microscopy. Overall, the combination of ultralow irradiation with image restoration enables comprehensive analysis of organelle dynamics over extended periods in living cells.</p>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"5 1","pages":"2400385"},"PeriodicalIF":11.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11935122/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202400385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Stimulated emission depletion (STED) microscopy is a super-resolution technique that surpasses the diffraction limit and has contributed to the study of dynamic processes in living cells. However, high laser intensities induce fluorophore photobleaching and sample phototoxicity, limiting the number of fluorescence images obtainable from a living cell. Herein, these challenges are addressed by using ultra-low irradiation intensities and a neural network for image restoration, enabling extensive imaging of single living cells. The endoplasmic reticulum (ER) is chosen as the target structure due to its dynamic nature over short and long timescales. The reduced irradiation intensity combined with denoising permits continuous ER dynamics observation in living cells for up to 7 h with a temporal resolution of seconds. This allows for quantitative analysis of ER structural features over short (seconds) and long (hours) timescales within the same cell, and enabled fast 3D live-cell STED microscopy. Overall, the combination of ultralow irradiation with image restoration enables comprehensive analysis of organelle dynamics over extended periods in living cells.

使用神经网络的活细胞内质网纳米结构动态的快速和长期超分辨率成像。
受激发射损耗(STED)显微镜是一种超分辨率技术,超越了衍射极限,有助于研究活细胞的动态过程。然而,高激光强度诱导荧光团光漂白和样品光毒性,限制了从活细胞获得的荧光图像的数量。在这里,这些挑战是通过使用超低辐射强度和神经网络进行图像恢复来解决的,从而能够对单个活细胞进行广泛的成像。内质网(ER)由于其在短时间和长时间尺度上的动态特性而被选择作为靶结构。降低的辐照强度与去噪相结合,可以在活细胞中连续观察内质网动态长达7小时,时间分辨率为秒。这允许在短(秒)和长(小时)的时间尺度内对同一细胞内的ER结构特征进行定量分析,并实现快速3D活细胞STED显微镜。总的来说,超低辐射与图像恢复的结合可以在活细胞中长时间全面分析细胞器动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.00
自引率
2.40%
发文量
0
期刊介绍: Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信