Synthetic O-(2-18F-fluoroethyl)-l-tyrosine-positron emission tomography generation and hotspot prediction via preoperative MRI fusion of gliomas lacking radiographic high-grade characteristics.

IF 3.7 Q1 CLINICAL NEUROLOGY
Neuro-oncology advances Pub Date : 2025-01-16 eCollection Date: 2025-01-01 DOI:10.1093/noajnl/vdaf001
Eric Suero Molina, Mehnaz Tabassum, Ghasem Azemi, Zeynep Özdemir, Wolfgang Roll, Philipp Backhaus, Philipp Schindler, Alex Valls Chavarria, Carlo Russo, Sidong Liu, Walter Stummer, Antonio Di Ieva
{"title":"Synthetic O-(2-<sup>18</sup>F-fluoroethyl)-l-tyrosine-positron emission tomography generation and hotspot prediction via preoperative MRI fusion of gliomas lacking radiographic high-grade characteristics.","authors":"Eric Suero Molina, Mehnaz Tabassum, Ghasem Azemi, Zeynep Özdemir, Wolfgang Roll, Philipp Backhaus, Philipp Schindler, Alex Valls Chavarria, Carlo Russo, Sidong Liu, Walter Stummer, Antonio Di Ieva","doi":"10.1093/noajnl/vdaf001","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Limited amino acid availability for positron emission tomography (PET) imaging hinders therapeutic decision-making for gliomas without typical high-grade imaging features. To address this gap, we evaluated a generative artificial intelligence (AI) approach for creating synthetic O-(2-<sup>18</sup>F-fluoroethyl)-l-tyrosine ([<sup>18</sup>F]FET)-PET and predicting high [<sup>18</sup>F]FET uptake from magnetic resonance imaging (MRI).</p><p><strong>Methods: </strong>We trained a deep learning (DL)-based model to segment tumors in MRI, extracted radiomic features using the Python PyRadiomics package, and utilized  a Random Forest classifier to predict high [<sup>18</sup>F]FET uptake. To generate [<sup>18</sup>F]FET-PET images, we employed a generative adversarial network framework and utilized a split-input fusion module for processing different MRI sequences through feature extraction, concatenation, and self-attention.</p><p><strong>Results: </strong>We included magnetic resonance imaging (MRI) and PET images from 215 studies for the hotspot classification and 211 studies for the synthetic PET generation task. The top-performing radiomic features achieved 80% accuracy for hotspot prediction. From the synthetic [<sup>18</sup>F]FET-PET, 85% were classified as clinically useful by senior physicians. Peak signal-to-noise ratio analysis indicated high signal fidelity with a peak at 40 dB, while structural similarity index values showed structural congruence. Root mean square error analysis demonstrated lower values below 5.6. Most visual information fidelity scores ranged between 0.6 and 0.7. This indicates that synthetic PET images retain the essential information required for clinical assessment and diagnosis.</p><p><strong>Conclusion: </strong>For the first time, we demonstrate that predicting high [<sup>18</sup>F]FET uptake and generating synthetic PET images from preoperative MRI in lower-grade and high-grade glioma are feasible. Advanced MRI modalities and other generative AI models will be used to improve the algorithm further in future studies.</p>","PeriodicalId":94157,"journal":{"name":"Neuro-oncology advances","volume":"7 1","pages":"vdaf001"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12012690/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/noajnl/vdaf001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Limited amino acid availability for positron emission tomography (PET) imaging hinders therapeutic decision-making for gliomas without typical high-grade imaging features. To address this gap, we evaluated a generative artificial intelligence (AI) approach for creating synthetic O-(2-18F-fluoroethyl)-l-tyrosine ([18F]FET)-PET and predicting high [18F]FET uptake from magnetic resonance imaging (MRI).

Methods: We trained a deep learning (DL)-based model to segment tumors in MRI, extracted radiomic features using the Python PyRadiomics package, and utilized  a Random Forest classifier to predict high [18F]FET uptake. To generate [18F]FET-PET images, we employed a generative adversarial network framework and utilized a split-input fusion module for processing different MRI sequences through feature extraction, concatenation, and self-attention.

Results: We included magnetic resonance imaging (MRI) and PET images from 215 studies for the hotspot classification and 211 studies for the synthetic PET generation task. The top-performing radiomic features achieved 80% accuracy for hotspot prediction. From the synthetic [18F]FET-PET, 85% were classified as clinically useful by senior physicians. Peak signal-to-noise ratio analysis indicated high signal fidelity with a peak at 40 dB, while structural similarity index values showed structural congruence. Root mean square error analysis demonstrated lower values below 5.6. Most visual information fidelity scores ranged between 0.6 and 0.7. This indicates that synthetic PET images retain the essential information required for clinical assessment and diagnosis.

Conclusion: For the first time, we demonstrate that predicting high [18F]FET uptake and generating synthetic PET images from preoperative MRI in lower-grade and high-grade glioma are feasible. Advanced MRI modalities and other generative AI models will be used to improve the algorithm further in future studies.

缺乏高级别影像学特征的胶质瘤术前MRI融合合成O-(2- 18f -氟乙基)-l-酪氨酸-正电子发射断层成像及热点预测
背景:正电子发射断层扫描(PET)成像中有限的氨基酸可用性阻碍了对没有典型高级别影像学特征的胶质瘤的治疗决策。为了解决这一差距,我们评估了一种生成式人工智能(AI)方法,用于合成O-(2-18F-氟乙基)-l-酪氨酸([18F]场效应晶体管)- pet,并从磁共振成像(MRI)中预测高[18F]场效应晶体管的摄取。方法:我们训练了一个基于深度学习(DL)的模型来分割MRI中的肿瘤,使用Python PyRadiomics包提取放射学特征,并使用随机森林分类器来预测高[18F]FET摄取。为了生成[18F]FET-PET图像,我们采用了生成式对抗网络框架,并利用分输入融合模块,通过特征提取、拼接和自注意来处理不同的MRI序列。结果:我们纳入了215篇研究的磁共振成像(MRI)和PET图像用于热点分类,211篇研究用于合成PET生成任务。表现最好的放射性特征对热点预测的准确率达到80%。从合成的[18F]FET-PET中,85%被高级医师归类为临床有用。峰值信噪比分析显示信号保真度高,峰值在40 dB,结构相似度指标值显示结构一致。均方根误差分析显示低于5.6的值较低。大多数视觉信息保真度得分在0.6到0.7之间。这表明合成PET图像保留了临床评估和诊断所需的基本信息。结论:我们首次证明了预测低级别和高级别胶质瘤的高[18F]FET摄取和从术前MRI生成合成PET图像是可行的。在未来的研究中,将使用先进的MRI模式和其他生成式AI模型来进一步改进算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信