{"title":"LILRB1 enhances the progression of diffuse large B-cell lymphoma through the CREB-SORBS3 pathway.","authors":"Liyuan Cao, Hanqing Zhao, Xuanyi Zhou, Jin Yuan, Lietao Weng, Zhuo Yu, Junke Zheng, Chiqi Chen","doi":"10.1007/s13402-025-01060-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Although 60-70% of diffuse large B-cell lymphoma (DLBCL) patients can be cured with the current standard of chemotherapy and immunotherapy, the remaining patients experience treatment resistance and have poor clinical outcomes. More effective strategies are needed for the DLBCL treatment.</p><p><strong>Methods: </strong>Databases of clinical patients were analyzed to investigate potential functions of leukocyte immunoglobulin-like receptor B1 (LILRB1) in DLBCL. Short hairpin RNAs were used for validation of in vitro and in vivo function of LILRB1 in DLBCL. RNA-seq was applied to explore potential mechanism, western blot and chromatin immunoprecipitation techniques were used to characterize the underlying signaling of CREB-SORBS3 pathway.</p><p><strong>Results: </strong>We found that LILRB1 was highly expressed in DLBCL cells and was adversely correlated with the overall survival of DLBCL patients. Knockdown of LILRB1 effectively inhibited the proliferation of DLBCL cells both in vitro and in vivo. Mechanistically, LILRB1 upregulated CREB/CREB phosphorylation and transactivated SORBS3 expression to maintain DLBCL cell proliferation and tumorigenicity.</p><p><strong>Conclusion: </strong>In this work, we revealed that LILRB1 was highly expressed in DLBCL cells and was negatively correlated with patient survival. Furthermore, we found that the LILRB1-CREB-SORBS3 pathway played a role in maintaining the proliferation of DLBCL cells. These data suggest that LILRB1 might be a potential target for the treatment of DLBCL.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"1005-1018"},"PeriodicalIF":4.8000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238205/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-025-01060-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Although 60-70% of diffuse large B-cell lymphoma (DLBCL) patients can be cured with the current standard of chemotherapy and immunotherapy, the remaining patients experience treatment resistance and have poor clinical outcomes. More effective strategies are needed for the DLBCL treatment.
Methods: Databases of clinical patients were analyzed to investigate potential functions of leukocyte immunoglobulin-like receptor B1 (LILRB1) in DLBCL. Short hairpin RNAs were used for validation of in vitro and in vivo function of LILRB1 in DLBCL. RNA-seq was applied to explore potential mechanism, western blot and chromatin immunoprecipitation techniques were used to characterize the underlying signaling of CREB-SORBS3 pathway.
Results: We found that LILRB1 was highly expressed in DLBCL cells and was adversely correlated with the overall survival of DLBCL patients. Knockdown of LILRB1 effectively inhibited the proliferation of DLBCL cells both in vitro and in vivo. Mechanistically, LILRB1 upregulated CREB/CREB phosphorylation and transactivated SORBS3 expression to maintain DLBCL cell proliferation and tumorigenicity.
Conclusion: In this work, we revealed that LILRB1 was highly expressed in DLBCL cells and was negatively correlated with patient survival. Furthermore, we found that the LILRB1-CREB-SORBS3 pathway played a role in maintaining the proliferation of DLBCL cells. These data suggest that LILRB1 might be a potential target for the treatment of DLBCL.
期刊介绍:
The Official Journal of the International Society for Cellular Oncology
Focuses on translational research
Addresses the conversion of cell biology to clinical applications
Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions.
A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients.
In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.