Lei Tang, Jinsong Zhang, Yanqiu Shao, Yifan Wei, Yuzhe Li, Kang Tian, Xiang Yan, Changjiang Feng, Qiangfeng Cliff Zhang
{"title":"Joint analysis of chromatin accessibility and gene expression in the same single cells reveals cancer-specific regulatory programs.","authors":"Lei Tang, Jinsong Zhang, Yanqiu Shao, Yifan Wei, Yuzhe Li, Kang Tian, Xiang Yan, Changjiang Feng, Qiangfeng Cliff Zhang","doi":"10.1016/j.cels.2025.101266","DOIUrl":null,"url":null,"abstract":"<p><p>Biological analyses conducted at the single-cell scale have revealed profound impacts of heterogeneity and plasticity of chromatin states and gene expression on physiology and cancer. Here, we developed Parallel-seq, a technology for simultaneously measuring chromatin accessibility and gene expression in the same single cells. By combining combinatorial cell indexing and droplet overloading, Parallel-seq generates high-quality data in an ultra-high-throughput fashion and at a cost two orders of magnitude lower than alternative technologies (10× Multiome and ISSAAC-seq). We applied Parallel-seq to 40 lung tumor and tumor-adjacent clinical samples and obtained over 200,000 high-quality joint scATAC-and-scRNA profiles. Leveraging this large dataset, we characterized copy-number variations (CNVs) and extrachromosomal circular DNA (eccDNA) heterogeneity in tumor cells, predicted hundreds of thousands of cell-type-specific regulatory events, and identified enhancer mutations affecting tumor progression. Our analyses highlight Parallel-seq's power in investigating epigenetic and genetic factors driving cancer development at the cell-type-specific level and its utility for revealing vulnerable therapeutic targets.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101266"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Biological analyses conducted at the single-cell scale have revealed profound impacts of heterogeneity and plasticity of chromatin states and gene expression on physiology and cancer. Here, we developed Parallel-seq, a technology for simultaneously measuring chromatin accessibility and gene expression in the same single cells. By combining combinatorial cell indexing and droplet overloading, Parallel-seq generates high-quality data in an ultra-high-throughput fashion and at a cost two orders of magnitude lower than alternative technologies (10× Multiome and ISSAAC-seq). We applied Parallel-seq to 40 lung tumor and tumor-adjacent clinical samples and obtained over 200,000 high-quality joint scATAC-and-scRNA profiles. Leveraging this large dataset, we characterized copy-number variations (CNVs) and extrachromosomal circular DNA (eccDNA) heterogeneity in tumor cells, predicted hundreds of thousands of cell-type-specific regulatory events, and identified enhancer mutations affecting tumor progression. Our analyses highlight Parallel-seq's power in investigating epigenetic and genetic factors driving cancer development at the cell-type-specific level and its utility for revealing vulnerable therapeutic targets.