Regression analysis of a graphical proportional hazards model for informatively left-truncated current status data.

IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Mengyue Zhang, Shishu Zhao, Shuying Wang, Xiaolin Xu
{"title":"Regression analysis of a graphical proportional hazards model for informatively left-truncated current status data.","authors":"Mengyue Zhang, Shishu Zhao, Shuying Wang, Xiaolin Xu","doi":"10.1007/s10985-025-09655-0","DOIUrl":null,"url":null,"abstract":"<p><p>In survival analysis, researchers commonly focus on variable selection issues in real-world data, particularly when complex network structures exist among covariates. Additionally, due to factors such as data collection costs and delayed entry, real-world data often exhibit censoring and truncation phenomena.This paper addresses left-truncated current status data by employing a copula-based approach to model the relationship between censoring time and failure time. Based on this, we investigate the problem of variable selection in the context of complex network structures among covariates. To this end, we integrate Markov Random Field (MRF) with the Proportional Hazards (PH) model, and extend the latter to more flexibly characterize the correlation structure among covariates. For solving the constructed model, we propose a penalized optimization method and utilize spline functions to estimate the baseline hazard function. Through numerical simulation experiments and case studies of clinical trial data, we comprehensively evaluate the effectiveness and performance of the proposed model and its parameter inference strategy. This evaluation not only demonstrates the robustness of the proposed model in handling complex disease data but also further verifies the high precision and reliability of the parameter estimation method.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-025-09655-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In survival analysis, researchers commonly focus on variable selection issues in real-world data, particularly when complex network structures exist among covariates. Additionally, due to factors such as data collection costs and delayed entry, real-world data often exhibit censoring and truncation phenomena.This paper addresses left-truncated current status data by employing a copula-based approach to model the relationship between censoring time and failure time. Based on this, we investigate the problem of variable selection in the context of complex network structures among covariates. To this end, we integrate Markov Random Field (MRF) with the Proportional Hazards (PH) model, and extend the latter to more flexibly characterize the correlation structure among covariates. For solving the constructed model, we propose a penalized optimization method and utilize spline functions to estimate the baseline hazard function. Through numerical simulation experiments and case studies of clinical trial data, we comprehensively evaluate the effectiveness and performance of the proposed model and its parameter inference strategy. This evaluation not only demonstrates the robustness of the proposed model in handling complex disease data but also further verifies the high precision and reliability of the parameter estimation method.

信息左截断当前状态数据的图形比例风险模型的回归分析。
在生存分析中,研究人员通常关注现实世界数据中的变量选择问题,特别是当协变量之间存在复杂的网络结构时。此外,由于数据收集成本和延迟输入等因素,实际数据经常表现出审查和截断现象。本文通过采用一种基于copula的方法来建模截尾时间和失效时间之间的关系,来处理左截尾的当前状态数据。在此基础上,研究了协变量间复杂网络结构下的变量选择问题。为此,我们将马尔可夫随机场(MRF)与比例风险(PH)模型相结合,并对后者进行扩展,以更灵活地表征协变量之间的相关结构。为了求解所构建的模型,我们提出了一种惩罚优化方法,并利用样条函数估计基线危害函数。通过数值模拟实验和临床试验数据的案例研究,我们全面评估了所提出的模型及其参数推理策略的有效性和性能。这一评价不仅证明了所提模型在处理复杂疾病数据方面的鲁棒性,也进一步验证了参数估计方法的高精度和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lifetime Data Analysis
Lifetime Data Analysis 数学-数学跨学科应用
CiteScore
2.30
自引率
7.70%
发文量
43
审稿时长
3 months
期刊介绍: The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信