Brain tumor detection using hybrid transfer learning and patch antenna-enhanced microwave imaging.

IF 1.4 4区 医学 Q4 ENGINEERING, BIOMEDICAL
Deebu Usha Sudhakaran, Sreeja Thanka Swami Kanaka Bai
{"title":"Brain tumor detection using hybrid transfer learning and patch antenna-enhanced microwave imaging.","authors":"Deebu Usha Sudhakaran, Sreeja Thanka Swami Kanaka Bai","doi":"10.1177/09287329251325740","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundBrain tumors pose a significant healthcare challenge, necessitating early detection and precise monitoring to ensure effective treatment.ObjectivesThe study proposes an innovative technique with the integration of hybrid transfer learning with improved microwave imaging. The integration of special feature extraction abilities of pre-trained deep learning methods along with the high-resolution imaging capabilities of the patch antenna.MethodsIt was primarily composed of two phases. The initial stage involves the development of a patch antenna and head phantom model, which are then subjected to SAR analysis to extract pertinent features from transmitted signals. In the second stage, an AI-based detection model that utilizes MobileNet V2 is implemented. The images acquired by the patch antenna system are fed into MobileNet V2, which extracts high-level features by employing depth-wise separable convolutions and inverted residual blocks. The fully connected layer is used to classify brain tumors in an effective manner by passing these extracted features.ResultsThe results of the simulation indicate that the model performs exceptionally well, with an accuracy of 98.44%, precision of 98.03%, recall of 99.00%, F1-score of 98.52%, and specificity of 97.82%.ConclusionThis method offers a promising solution for the non-invasive and real-time detection of brain tumors, taking advantage of the electromagnetic properties of brain tissue and the capabilities of AI to address the limitations of current diagnostic methods, such as MRI and CT scans.</p>","PeriodicalId":48978,"journal":{"name":"Technology and Health Care","volume":" ","pages":"9287329251325740"},"PeriodicalIF":1.4000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology and Health Care","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09287329251325740","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

BackgroundBrain tumors pose a significant healthcare challenge, necessitating early detection and precise monitoring to ensure effective treatment.ObjectivesThe study proposes an innovative technique with the integration of hybrid transfer learning with improved microwave imaging. The integration of special feature extraction abilities of pre-trained deep learning methods along with the high-resolution imaging capabilities of the patch antenna.MethodsIt was primarily composed of two phases. The initial stage involves the development of a patch antenna and head phantom model, which are then subjected to SAR analysis to extract pertinent features from transmitted signals. In the second stage, an AI-based detection model that utilizes MobileNet V2 is implemented. The images acquired by the patch antenna system are fed into MobileNet V2, which extracts high-level features by employing depth-wise separable convolutions and inverted residual blocks. The fully connected layer is used to classify brain tumors in an effective manner by passing these extracted features.ResultsThe results of the simulation indicate that the model performs exceptionally well, with an accuracy of 98.44%, precision of 98.03%, recall of 99.00%, F1-score of 98.52%, and specificity of 97.82%.ConclusionThis method offers a promising solution for the non-invasive and real-time detection of brain tumors, taking advantage of the electromagnetic properties of brain tissue and the capabilities of AI to address the limitations of current diagnostic methods, such as MRI and CT scans.

混合迁移学习和贴片天线增强微波成像的脑肿瘤检测。
脑肿瘤是一项重大的医疗挑战,需要早期发现和精确监测以确保有效治疗。目的提出一种将混合迁移学习与改进的微波成像相结合的创新技术。将预先训练的深度学习方法的特殊特征提取能力与贴片天线的高分辨率成像能力相结合。方法主要分为两个阶段。初始阶段包括开发贴片天线和头部幻影模型,然后对其进行SAR分析,以从传输信号中提取相关特征。在第二阶段,实现了利用MobileNet V2的基于人工智能的检测模型。将贴片天线系统获取的图像输入到MobileNet V2中,MobileNet V2通过采用深度可分卷积和反向残差块提取高级特征。全连接层通过传递这些提取的特征,对脑肿瘤进行有效的分类。结果仿真结果表明,该模型的准确率为98.44%,精密度为98.03%,召回率为99.00%,f1评分为98.52%,特异性为97.82%。结论该方法利用脑组织的电磁特性和人工智能的能力,解决了MRI和CT扫描等现有诊断方法的局限性,为脑肿瘤的无创实时检测提供了一种很有前景的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Technology and Health Care
Technology and Health Care HEALTH CARE SCIENCES & SERVICES-ENGINEERING, BIOMEDICAL
CiteScore
2.10
自引率
6.20%
发文量
282
审稿时长
>12 weeks
期刊介绍: Technology and Health Care is intended to serve as a forum for the presentation of original articles and technical notes, observing rigorous scientific standards. Furthermore, upon invitation, reviews, tutorials, discussion papers and minisymposia are featured. The main focus of THC is related to the overlapping areas of engineering and medicine. The following types of contributions are considered: 1.Original articles: New concepts, procedures and devices associated with the use of technology in medical research and clinical practice are presented to a readership with a widespread background in engineering and/or medicine. In particular, the clinical benefit deriving from the application of engineering methods and devices in clinical medicine should be demonstrated. Typically, full length original contributions have a length of 4000 words, thereby taking duly into account figures and tables. 2.Technical Notes and Short Communications: Technical Notes relate to novel technical developments with relevance for clinical medicine. In Short Communications, clinical applications are shortly described. 3.Both Technical Notes and Short Communications typically have a length of 1500 words. Reviews and Tutorials (upon invitation only): Tutorial and educational articles for persons with a primarily medical background on principles of engineering with particular significance for biomedical applications and vice versa are presented. The Editorial Board is responsible for the selection of topics. 4.Minisymposia (upon invitation only): Under the leadership of a Special Editor, controversial or important issues relating to health care are highlighted and discussed by various authors. 5.Letters to the Editors: Discussions or short statements (not indexed).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信