Aeroengine remaining useful life prediction via integrating enhanced inverted transformer and spatiotemporal graph learning.

Shilong Sun, Hao Ding, Zida Zhao, Yu Zhou, Dong Wang, Wenfu Xu
{"title":"Aeroengine remaining useful life prediction via integrating enhanced inverted transformer and spatiotemporal graph learning.","authors":"Shilong Sun, Hao Ding, Zida Zhao, Yu Zhou, Dong Wang, Wenfu Xu","doi":"10.1016/j.isatra.2025.05.010","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate prediction of aeroengine Remaining Useful Life (RUL) is critical for ensuring flight safety, minimizing maintenance costs, and improving operational efficiency. This study proposes a novel model, the Fourier-Enhanced Inverted Transformer with Graph-Augmented Spatiotemporal Modeling (FIT-GSTM), to enhance RUL prediction performance. FIT-GSTM combines an inverted Transformer with a Spatiotemporal Graph Convolutional Network (STGCN) to effectively capture global spatiotemporal dependencies across multi-sensor data. To further enrich feature representation, the model incorporates Fast Fourier Transform (FFT) to extract frequency-domain information and fuses it with time-domain features, enhancing robustness to noise. Additionally, the integration of Memory Tokens and Reversible Instance Normalization (RevIN) strengthens the model's ability to retain long-term dependencies and adapt to heterogeneous data distributions. Experimental evaluations on the C-MAPSS dataset demonstrate that FIT-GSTM achieves superior RUL prediction accuracy and generalization compared to existing methods, highlighting its potential for real-world deployment in aeroengine health management.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2025.05.010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate prediction of aeroengine Remaining Useful Life (RUL) is critical for ensuring flight safety, minimizing maintenance costs, and improving operational efficiency. This study proposes a novel model, the Fourier-Enhanced Inverted Transformer with Graph-Augmented Spatiotemporal Modeling (FIT-GSTM), to enhance RUL prediction performance. FIT-GSTM combines an inverted Transformer with a Spatiotemporal Graph Convolutional Network (STGCN) to effectively capture global spatiotemporal dependencies across multi-sensor data. To further enrich feature representation, the model incorporates Fast Fourier Transform (FFT) to extract frequency-domain information and fuses it with time-domain features, enhancing robustness to noise. Additionally, the integration of Memory Tokens and Reversible Instance Normalization (RevIN) strengthens the model's ability to retain long-term dependencies and adapt to heterogeneous data distributions. Experimental evaluations on the C-MAPSS dataset demonstrate that FIT-GSTM achieves superior RUL prediction accuracy and generalization compared to existing methods, highlighting its potential for real-world deployment in aeroengine health management.

基于增强倒置变压器和时空图学习的航空发动机剩余使用寿命预测。
航空发动机剩余使用寿命(RUL)的准确预测对于保证飞行安全、降低维修成本和提高运行效率至关重要。本研究提出了一种新的模型,傅里叶增强倒置变压器与图增强时空建模(FIT-GSTM),以提高RUL的预测性能。FIT-GSTM结合了一个倒置变压器和一个时空图卷积网络(STGCN),可以有效地捕获跨多传感器数据的全局时空依赖关系。为了进一步丰富特征表示,该模型采用快速傅里叶变换(FFT)提取频域信息,并将其与时域特征融合,增强了对噪声的鲁棒性。此外,内存令牌和可逆实例规范化(RevIN)的集成增强了模型保留长期依赖关系和适应异构数据分布的能力。在C-MAPSS数据集上的实验评估表明,与现有方法相比,FIT-GSTM实现了更高的RUL预测精度和泛化,突出了其在航空发动机健康管理中的实际应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信