Incorporating multiple functional annotations to improve polygenic risk prediction accuracy.

IF 11.1 Q1 CELL BIOLOGY
Cell genomics Pub Date : 2025-06-11 Epub Date: 2025-04-15 DOI:10.1016/j.xgen.2025.100850
Zhonghe Shao, Wangxia Tang, Hongji Wu, Yifan Kong, Xingjie Hao
{"title":"Incorporating multiple functional annotations to improve polygenic risk prediction accuracy.","authors":"Zhonghe Shao, Wangxia Tang, Hongji Wu, Yifan Kong, Xingjie Hao","doi":"10.1016/j.xgen.2025.100850","DOIUrl":null,"url":null,"abstract":"<p><p>We present OmniPRS, a scalable biobank-scale framework that improves genetic risk prediction for complex traits by integrating genome-wide association study (GWAS) summary statistics and functional annotations. It employs a mixed model incorporating tissue-specific genetic variance components from annotations to re-estimate single-nucleotide polymorphism (SNP) effects and constructs tissue-specific polygenic risk scores (PRSs) and aggregates them into the final OmniPRS. Our experiments, encompassing 135 simulation scenarios and 11 representative traits, demonstrate that OmniPRS is flexible and robust, delivering efficient and accurate predictions comparable to ten leading PRS methods. For quantitative (binary) traits, OmniPRS achieved an average improvement of 52.31% (19.83%) versus the clumping and thresholding (C+T) method, 3.92% (1.31%) versus the annotation-integrated PRSs (LDpred-funct), and 8.44% (2.27%) versus the Bayesian-based PRSs (PRScs). Notably, it achieved 35× faster computation than the PRScs. This rapid, precise framework enables efficient polygenic risk scoring with multi-annotation integration for large-scale genomic studies.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100850"},"PeriodicalIF":11.1000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2025.100850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We present OmniPRS, a scalable biobank-scale framework that improves genetic risk prediction for complex traits by integrating genome-wide association study (GWAS) summary statistics and functional annotations. It employs a mixed model incorporating tissue-specific genetic variance components from annotations to re-estimate single-nucleotide polymorphism (SNP) effects and constructs tissue-specific polygenic risk scores (PRSs) and aggregates them into the final OmniPRS. Our experiments, encompassing 135 simulation scenarios and 11 representative traits, demonstrate that OmniPRS is flexible and robust, delivering efficient and accurate predictions comparable to ten leading PRS methods. For quantitative (binary) traits, OmniPRS achieved an average improvement of 52.31% (19.83%) versus the clumping and thresholding (C+T) method, 3.92% (1.31%) versus the annotation-integrated PRSs (LDpred-funct), and 8.44% (2.27%) versus the Bayesian-based PRSs (PRScs). Notably, it achieved 35× faster computation than the PRScs. This rapid, precise framework enables efficient polygenic risk scoring with multi-annotation integration for large-scale genomic studies.

结合多个功能注释,提高多基因风险预测的准确性。
我们提出了OmniPRS,一个可扩展的生物库规模框架,通过整合全基因组关联研究(GWAS)汇总统计和功能注释,提高了复杂性状的遗传风险预测。该方法采用混合模型,结合来自注释的组织特异性遗传方差成分,重新评估单核苷酸多态性(SNP)效应,构建组织特异性多基因风险评分(prs),并将其汇总到最终的OmniPRS中。我们的实验包括135个模拟场景和11个代表性特征,证明了OmniPRS的灵活性和鲁棒性,可以提供与10种领先的PRS方法相当的高效和准确的预测。在数量(二元)性状方面,OmniPRS比聚类和阈值法(C+T)平均提高52.31%(19.83%),比注释集成的prs (LDpred-funct)平均提高3.92%(1.31%),比基于贝叶斯的prs (PRScs)平均提高8.44%(2.27%)。值得注意的是,它的计算速度比psc快35倍。这种快速,精确的框架使大规模基因组研究的多注释集成有效的多基因风险评分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信