Learning-based MPC of sampled-data systems with partially unknown dynamics.

Seungyong Han, Xuyang Guo, Suneel Kumar Kommuri
{"title":"Learning-based MPC of sampled-data systems with partially unknown dynamics.","authors":"Seungyong Han, Xuyang Guo, Suneel Kumar Kommuri","doi":"10.1016/j.isatra.2025.04.028","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, a novel learning-based model predictive control (LMPC) method is proposed for sampled-data control systems with partially unknown dynamics. Many real-world processes are subject to time-varying parameters and irregular data sampling, making accurate modeling and stability guarantees extremely challenging. To address this, the proposed method uses a neural ordinary differential equation (NODE) to learn unknown time-varying parameter dynamics from irregularly observed data. This learned model is then integrated into the sampled-data MPC framework. In particular, the LMPC method guarantees the system's ultimate boundedness by deriving conditions based on the Gronwall-Bellman inequality. Finally, two practical examples illustrate the applicability of the LMPC method to real-world systems and demonstrate its quantitative stability analysis.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2025.04.028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a novel learning-based model predictive control (LMPC) method is proposed for sampled-data control systems with partially unknown dynamics. Many real-world processes are subject to time-varying parameters and irregular data sampling, making accurate modeling and stability guarantees extremely challenging. To address this, the proposed method uses a neural ordinary differential equation (NODE) to learn unknown time-varying parameter dynamics from irregularly observed data. This learned model is then integrated into the sampled-data MPC framework. In particular, the LMPC method guarantees the system's ultimate boundedness by deriving conditions based on the Gronwall-Bellman inequality. Finally, two practical examples illustrate the applicability of the LMPC method to real-world systems and demonstrate its quantitative stability analysis.

部分未知动态的采样数据系统的基于学习的MPC。
针对动态部分未知的采样数据控制系统,提出了一种新的基于学习的模型预测控制方法。许多现实世界的过程都受到时变参数和不规则数据采样的影响,这使得准确的建模和稳定性保证极具挑战性。为了解决这个问题,该方法使用神经常微分方程(NODE)从不规则观测数据中学习未知的时变参数动态。然后将学习到的模型集成到采样数据MPC框架中。特别地,LMPC方法通过推导基于Gronwall-Bellman不等式的条件来保证系统的最终有界性。最后,通过两个实例说明了LMPC方法在实际系统中的适用性,并演示了其定量稳定性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信