{"title":"Synergistic approach of PEGylated photothermal agent and immunomodulator in cancer immunotherapy.","authors":"Gong Yi Yong, Anyanee Kamkaew, Chin Siang Kue","doi":"10.1080/17435889.2025.2489342","DOIUrl":null,"url":null,"abstract":"<p><p>Photothermal therapy (PTT) utilizes photothermal agents (PTAs) to generate heat at the local tumor site that leads to ablation upon photoirradiation at a specific wavelength of light. Currently, most of the available PTAs have weak tumor selectivity and depositing ability, which leads to poor therapeutic outcomes. PEGylation of PTAs improves therapeutic outcomes, prolongs systemic circulation time, enhances tumor accumulation, and reduces the risk of clearance by the immune system. This paper reviews the recent developments of PEGylated PTAs in photothermal cancer therapy from 2019 to 2023, highlighting their antitumour efficacy and immune response post-therapy with immune agents, current challenges and strategies. This review aims to foster knowledge dissemination on the application of nanomedicine in photothermal cancer therapy from an immunological perspective and to encourage the clinical translation of these nanomaterials.</p>","PeriodicalId":74240,"journal":{"name":"Nanomedicine (London, England)","volume":"20 9","pages":"967-983"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12051527/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine (London, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17435889.2025.2489342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Photothermal therapy (PTT) utilizes photothermal agents (PTAs) to generate heat at the local tumor site that leads to ablation upon photoirradiation at a specific wavelength of light. Currently, most of the available PTAs have weak tumor selectivity and depositing ability, which leads to poor therapeutic outcomes. PEGylation of PTAs improves therapeutic outcomes, prolongs systemic circulation time, enhances tumor accumulation, and reduces the risk of clearance by the immune system. This paper reviews the recent developments of PEGylated PTAs in photothermal cancer therapy from 2019 to 2023, highlighting their antitumour efficacy and immune response post-therapy with immune agents, current challenges and strategies. This review aims to foster knowledge dissemination on the application of nanomedicine in photothermal cancer therapy from an immunological perspective and to encourage the clinical translation of these nanomaterials.