{"title":"PILRα on tumor cells interacts with the T cell surface protein CD99 to suppress antitumor immunity.","authors":"Lin Xia, Jun-Yi Liu, Chao Yu, Hong-Wei Lin, Ya-Hong Hu, Guo-Sheng Hu, Yao-Hui He, Yun-Yao Chen, Wen-Xin Luo, Ning-Shao Xia, Wen Liu","doi":"10.1038/s43018-025-00958-7","DOIUrl":null,"url":null,"abstract":"<p><p>Immune checkpoint blockade using anti-programmed cell death protein 1/programmed cell death 1 ligand 1 antibody effectively targets the tumor-T cell interaction in cancer treatment, yet the overall response rate of less than 30% necessitates the identification of additional immune checkpoints modulating T cell function. Here, we identified the tumor cell-expressed paired immunoglobulin-like type 2 receptor alpha (PILRα) as an immune suppressor targeting T cells using high-throughput screening. PILRα inhibits T cell activation, proliferation and effector function by targeting CD99, a T cell surface antigen, suppressing ZAP70/NFAT/IL-2/JAK/STAT signaling. A cluster of O-glycosylated serine and threonine residues within the stalk region is critical for PILRα-CD99 interactions. Blocking these interactions with a stalk-targeting anti-PILRα antibody enhances T cell antitumor immunity and suppresses tumor growth. When combined with programmed cell death protein 1 antibody, anti-PILRα antibody shows synergistic tumor suppression. Notably, PILRα is highly expressed in several human cancers and predicts poor prognosis. These findings unveil PILRα as an immune checkpoint with therapeutic potential for clinical cancer immunotherapy.</p>","PeriodicalId":18885,"journal":{"name":"Nature cancer","volume":" ","pages":""},"PeriodicalIF":23.5000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s43018-025-00958-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Immune checkpoint blockade using anti-programmed cell death protein 1/programmed cell death 1 ligand 1 antibody effectively targets the tumor-T cell interaction in cancer treatment, yet the overall response rate of less than 30% necessitates the identification of additional immune checkpoints modulating T cell function. Here, we identified the tumor cell-expressed paired immunoglobulin-like type 2 receptor alpha (PILRα) as an immune suppressor targeting T cells using high-throughput screening. PILRα inhibits T cell activation, proliferation and effector function by targeting CD99, a T cell surface antigen, suppressing ZAP70/NFAT/IL-2/JAK/STAT signaling. A cluster of O-glycosylated serine and threonine residues within the stalk region is critical for PILRα-CD99 interactions. Blocking these interactions with a stalk-targeting anti-PILRα antibody enhances T cell antitumor immunity and suppresses tumor growth. When combined with programmed cell death protein 1 antibody, anti-PILRα antibody shows synergistic tumor suppression. Notably, PILRα is highly expressed in several human cancers and predicts poor prognosis. These findings unveil PILRα as an immune checkpoint with therapeutic potential for clinical cancer immunotherapy.
期刊介绍:
Cancer is a devastating disease responsible for millions of deaths worldwide. However, many of these deaths could be prevented with improved prevention and treatment strategies. To achieve this, it is crucial to focus on accurate diagnosis, effective treatment methods, and understanding the socioeconomic factors that influence cancer rates.
Nature Cancer aims to serve as a unique platform for sharing the latest advancements in cancer research across various scientific fields, encompassing life sciences, physical sciences, applied sciences, and social sciences. The journal is particularly interested in fundamental research that enhances our understanding of tumor development and progression, as well as research that translates this knowledge into clinical applications through innovative diagnostic and therapeutic approaches. Additionally, Nature Cancer welcomes clinical studies that inform cancer diagnosis, treatment, and prevention, along with contributions exploring the societal impact of cancer on a global scale.
In addition to publishing original research, Nature Cancer will feature Comments, Reviews, News & Views, Features, and Correspondence that hold significant value for the diverse field of cancer research.