{"title":"Transcriptional mechanisms underlying thiazolidine-4-carboxylic acid (T4C)-primed salt tolerance in Arabidopsis.","authors":"Wei-Yung Hsu, Yi-Zhen Wu, Yu-Min Lin, Mei-Juan Zheng, Liang-Jwu Chen, Chuan-Ming Yeh","doi":"10.1007/s00299-025-03486-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>T4C enhances salt stress tolerance in Arabidopsis by regulating osmotic and oxidative stress responses, activating ABA-related pathways, and inducing stress-responsive genes, including LEA proteins. High soil salinity is a major environmental stress that restricts crop productivity worldwide, necessitating strategies to enhance plant salt tolerance. Thiazolidine-4-carboxylic acid (T4C) has been reported to regulate proline biosynthesis, which is essential for abiotic stress responses, yet its role in stress tolerance remains unclear. This study investigates the physiological and molecular effects of T4C on Arabidopsis thaliana under salt stress conditions. T4C treatment alleviated salt-induced growth inhibition, improving biomass, relative water content, and chlorophyll retention while reducing oxidative stress markers such as malondialdehyde and anthocyanin accumulation. Transcriptomic and quantitative PCR analyses revealed that T4C upregulated proline biosynthesis genes, ABA-dependent signaling (RD29b, ABI3), and Late Embryogenesis Abundant (LEA) genes. Gene Ontology (GO) enrichment analysis identified biological processes related to water deprivation, ABA signaling, and salt stress, while Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated the involvement of phenylpropanoid biosynthesis, plant hormone signal transduction, and MAPK signaling in T4C-mediated responses. Notably, several transcription factors, including NAC, MYB, and WRKY family members, were identified as candidates involved in T4C-mediated stress priming. Collectively, these findings suggest that T4C may enhance salt tolerance by modulating osmotic balance, reducing oxidative stress, and activating stress-responsive genes and transcriptional regulators. Our results provide novel insights into the molecular mechanisms underlying T4C-mediated stress responses, highlighting its potential as a chemical priming agent to improve plant resilience under saline conditions.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 5","pages":"104"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-025-03486-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Key message: T4C enhances salt stress tolerance in Arabidopsis by regulating osmotic and oxidative stress responses, activating ABA-related pathways, and inducing stress-responsive genes, including LEA proteins. High soil salinity is a major environmental stress that restricts crop productivity worldwide, necessitating strategies to enhance plant salt tolerance. Thiazolidine-4-carboxylic acid (T4C) has been reported to regulate proline biosynthesis, which is essential for abiotic stress responses, yet its role in stress tolerance remains unclear. This study investigates the physiological and molecular effects of T4C on Arabidopsis thaliana under salt stress conditions. T4C treatment alleviated salt-induced growth inhibition, improving biomass, relative water content, and chlorophyll retention while reducing oxidative stress markers such as malondialdehyde and anthocyanin accumulation. Transcriptomic and quantitative PCR analyses revealed that T4C upregulated proline biosynthesis genes, ABA-dependent signaling (RD29b, ABI3), and Late Embryogenesis Abundant (LEA) genes. Gene Ontology (GO) enrichment analysis identified biological processes related to water deprivation, ABA signaling, and salt stress, while Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated the involvement of phenylpropanoid biosynthesis, plant hormone signal transduction, and MAPK signaling in T4C-mediated responses. Notably, several transcription factors, including NAC, MYB, and WRKY family members, were identified as candidates involved in T4C-mediated stress priming. Collectively, these findings suggest that T4C may enhance salt tolerance by modulating osmotic balance, reducing oxidative stress, and activating stress-responsive genes and transcriptional regulators. Our results provide novel insights into the molecular mechanisms underlying T4C-mediated stress responses, highlighting its potential as a chemical priming agent to improve plant resilience under saline conditions.
期刊介绍:
Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as:
- genomics and genetics
- metabolism
- cell biology
- abiotic and biotic stress
- phytopathology
- gene transfer and expression
- molecular pharming
- systems biology
- nanobiotechnology
- genome editing
- phenomics and synthetic biology
The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.