SlDCD and SlLCD increased the salt tolerance in tomato seedlings by enhancing antioxidant and photosynthesis capacity.

IF 5.3 2区 生物学 Q1 PLANT SCIENCES
Xinfang Chen, Dengjing Huang, Xiaoling Man, Ailing Li, Hua Fang, Siting Lu, Di Yang, Weibiao Liao
{"title":"SlDCD and SlLCD increased the salt tolerance in tomato seedlings by enhancing antioxidant and photosynthesis capacity.","authors":"Xinfang Chen, Dengjing Huang, Xiaoling Man, Ailing Li, Hua Fang, Siting Lu, Di Yang, Weibiao Liao","doi":"10.1007/s00299-025-03509-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>Using gene silence and heterologously overexpression, hydrogen sulfide synthesis-related genes l-cysteine desulfhydrase and d-cysteine desulfhydrase have been shown to enhance salt tolerance in tomato seedlings. Hydrogen sulfide (H<sub>2</sub>S) plays an important role in alleviating abiotic stress. L-Cysteine desulfhydrase (LCD) and D-cysteine desulfhydrase (DCD) are two important H<sub>2</sub>S synthesis enzymes. Until now, whether and how SlDCD and SlLCD increase salt tolerance in plant are still unknown. Here, we explored the effects of SlDCD and SlLCD on salt tolerance in tomato seedlings by silencing SlDCD and SlLCD and heterologously overexpressing SlDCD and SlLCD. In tomato seedlings, exogenous sodium hydrosulfide (NaHS, a H<sub>2</sub>S donor) increased salt tolerance while decreasing H<sub>2</sub>S synthesis-related enzyme activity, endogenous H<sub>2</sub>S levels, and H<sub>2</sub>S synthesis-related gene expression. Silencing SlDCD and SlLCD inhibited tomato seedling growth under salt stress, increased relative conductivity, MDA, H<sub>2</sub>O<sub>2</sub>, O<sub>2</sub><sup>-</sup>, Pro, and carotenoid content, Ci and NPQ. In contrast, it decreased the activity of antioxidant enzymes (POD, SOD, CAT and APX) and the expression of related genes (POD, SOD, CAT and APX), chlorophyll content, photosynthetic parameters (Pn, Gs and Tr) and fluorescence parameters (Fv/Fm, φPSII and qP), while exogenous NaHS considerably mitigated the adverse impacts of salt stress in SlDCD and SlLCD silenced-tomato seedlings. Overexpression of SlDCD and SlLCD in Arabidopsis significantly enhanced plant salt tolerance. Taken together, our results indicate that SlDCD and SlLCD could enhance the antioxidant activity and photosynthesis capacity under salt stress, which results improving salt tolerance in tomato seedlings.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 6","pages":"117"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-025-03509-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Key message: Using gene silence and heterologously overexpression, hydrogen sulfide synthesis-related genes l-cysteine desulfhydrase and d-cysteine desulfhydrase have been shown to enhance salt tolerance in tomato seedlings. Hydrogen sulfide (H2S) plays an important role in alleviating abiotic stress. L-Cysteine desulfhydrase (LCD) and D-cysteine desulfhydrase (DCD) are two important H2S synthesis enzymes. Until now, whether and how SlDCD and SlLCD increase salt tolerance in plant are still unknown. Here, we explored the effects of SlDCD and SlLCD on salt tolerance in tomato seedlings by silencing SlDCD and SlLCD and heterologously overexpressing SlDCD and SlLCD. In tomato seedlings, exogenous sodium hydrosulfide (NaHS, a H2S donor) increased salt tolerance while decreasing H2S synthesis-related enzyme activity, endogenous H2S levels, and H2S synthesis-related gene expression. Silencing SlDCD and SlLCD inhibited tomato seedling growth under salt stress, increased relative conductivity, MDA, H2O2, O2-, Pro, and carotenoid content, Ci and NPQ. In contrast, it decreased the activity of antioxidant enzymes (POD, SOD, CAT and APX) and the expression of related genes (POD, SOD, CAT and APX), chlorophyll content, photosynthetic parameters (Pn, Gs and Tr) and fluorescence parameters (Fv/Fm, φPSII and qP), while exogenous NaHS considerably mitigated the adverse impacts of salt stress in SlDCD and SlLCD silenced-tomato seedlings. Overexpression of SlDCD and SlLCD in Arabidopsis significantly enhanced plant salt tolerance. Taken together, our results indicate that SlDCD and SlLCD could enhance the antioxidant activity and photosynthesis capacity under salt stress, which results improving salt tolerance in tomato seedlings.

SlDCD和SlLCD通过增强抗氧化能力和光合能力来提高番茄幼苗的耐盐性。
研究表明,利用基因沉默和异源过表达,硫化氢合成相关基因l-半胱氨酸脱硫酶和d-半胱氨酸脱硫酶可以增强番茄幼苗的耐盐性。硫化氢(H2S)在缓解非生物胁迫中起着重要作用。l -半胱氨酸脱硫酶(LCD)和d -半胱氨酸脱硫酶(DCD)是两种重要的H2S合成酶。到目前为止,SlDCD和SlLCD是否以及如何提高植物的耐盐性仍然是未知的。本研究通过沉默SlDCD和SlLCD以及异源过表达SlDCD和SlLCD,探讨了SlDCD和SlLCD对番茄幼苗耐盐性的影响。在番茄幼苗中,外源氢硫化钠(NaHS, H2S供体)增加了耐盐性,同时降低了H2S合成相关酶的活性、内源H2S水平和H2S合成相关基因的表达。沉默SlDCD和SlLCD抑制了盐胁迫下番茄幼苗的生长,提高了相对电导率、MDA、H2O2、O2-、Pro和类胡萝卜素含量、Ci和NPQ。相反,外源NaHS降低了SlDCD和SlLCD沉默番茄幼苗的抗氧化酶(POD、SOD、CAT和APX)活性和相关基因(POD、SOD、CAT和APX)表达、叶绿素含量、光合参数(Pn、Gs和Tr)和荧光参数(Fv/Fm、φPSII和qP),而外源NaHS则显著减轻了盐胁迫对SlDCD和SlLCD沉默番茄幼苗的不利影响。过表达SlDCD和SlLCD可显著增强拟南芥的耐盐性。综上所述,SlDCD和SlLCD可以提高番茄幼苗抗氧化能力和光合能力,从而提高番茄幼苗的耐盐性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Cell Reports
Plant Cell Reports 生物-植物科学
CiteScore
10.80
自引率
1.60%
发文量
135
审稿时长
3.2 months
期刊介绍: Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as: - genomics and genetics - metabolism - cell biology - abiotic and biotic stress - phytopathology - gene transfer and expression - molecular pharming - systems biology - nanobiotechnology - genome editing - phenomics and synthetic biology The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信