{"title":"SlDCD and SlLCD increased the salt tolerance in tomato seedlings by enhancing antioxidant and photosynthesis capacity.","authors":"Xinfang Chen, Dengjing Huang, Xiaoling Man, Ailing Li, Hua Fang, Siting Lu, Di Yang, Weibiao Liao","doi":"10.1007/s00299-025-03509-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>Using gene silence and heterologously overexpression, hydrogen sulfide synthesis-related genes l-cysteine desulfhydrase and d-cysteine desulfhydrase have been shown to enhance salt tolerance in tomato seedlings. Hydrogen sulfide (H<sub>2</sub>S) plays an important role in alleviating abiotic stress. L-Cysteine desulfhydrase (LCD) and D-cysteine desulfhydrase (DCD) are two important H<sub>2</sub>S synthesis enzymes. Until now, whether and how SlDCD and SlLCD increase salt tolerance in plant are still unknown. Here, we explored the effects of SlDCD and SlLCD on salt tolerance in tomato seedlings by silencing SlDCD and SlLCD and heterologously overexpressing SlDCD and SlLCD. In tomato seedlings, exogenous sodium hydrosulfide (NaHS, a H<sub>2</sub>S donor) increased salt tolerance while decreasing H<sub>2</sub>S synthesis-related enzyme activity, endogenous H<sub>2</sub>S levels, and H<sub>2</sub>S synthesis-related gene expression. Silencing SlDCD and SlLCD inhibited tomato seedling growth under salt stress, increased relative conductivity, MDA, H<sub>2</sub>O<sub>2</sub>, O<sub>2</sub><sup>-</sup>, Pro, and carotenoid content, Ci and NPQ. In contrast, it decreased the activity of antioxidant enzymes (POD, SOD, CAT and APX) and the expression of related genes (POD, SOD, CAT and APX), chlorophyll content, photosynthetic parameters (Pn, Gs and Tr) and fluorescence parameters (Fv/Fm, φPSII and qP), while exogenous NaHS considerably mitigated the adverse impacts of salt stress in SlDCD and SlLCD silenced-tomato seedlings. Overexpression of SlDCD and SlLCD in Arabidopsis significantly enhanced plant salt tolerance. Taken together, our results indicate that SlDCD and SlLCD could enhance the antioxidant activity and photosynthesis capacity under salt stress, which results improving salt tolerance in tomato seedlings.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 6","pages":"117"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-025-03509-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Key message: Using gene silence and heterologously overexpression, hydrogen sulfide synthesis-related genes l-cysteine desulfhydrase and d-cysteine desulfhydrase have been shown to enhance salt tolerance in tomato seedlings. Hydrogen sulfide (H2S) plays an important role in alleviating abiotic stress. L-Cysteine desulfhydrase (LCD) and D-cysteine desulfhydrase (DCD) are two important H2S synthesis enzymes. Until now, whether and how SlDCD and SlLCD increase salt tolerance in plant are still unknown. Here, we explored the effects of SlDCD and SlLCD on salt tolerance in tomato seedlings by silencing SlDCD and SlLCD and heterologously overexpressing SlDCD and SlLCD. In tomato seedlings, exogenous sodium hydrosulfide (NaHS, a H2S donor) increased salt tolerance while decreasing H2S synthesis-related enzyme activity, endogenous H2S levels, and H2S synthesis-related gene expression. Silencing SlDCD and SlLCD inhibited tomato seedling growth under salt stress, increased relative conductivity, MDA, H2O2, O2-, Pro, and carotenoid content, Ci and NPQ. In contrast, it decreased the activity of antioxidant enzymes (POD, SOD, CAT and APX) and the expression of related genes (POD, SOD, CAT and APX), chlorophyll content, photosynthetic parameters (Pn, Gs and Tr) and fluorescence parameters (Fv/Fm, φPSII and qP), while exogenous NaHS considerably mitigated the adverse impacts of salt stress in SlDCD and SlLCD silenced-tomato seedlings. Overexpression of SlDCD and SlLCD in Arabidopsis significantly enhanced plant salt tolerance. Taken together, our results indicate that SlDCD and SlLCD could enhance the antioxidant activity and photosynthesis capacity under salt stress, which results improving salt tolerance in tomato seedlings.
期刊介绍:
Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as:
- genomics and genetics
- metabolism
- cell biology
- abiotic and biotic stress
- phytopathology
- gene transfer and expression
- molecular pharming
- systems biology
- nanobiotechnology
- genome editing
- phenomics and synthetic biology
The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.