Huma Quasimi, Sheema Wazib, Gausal Azam Khan, Md Iqbal Alam
{"title":"HMGB1 Modulates Angiogenic Imbalance and Cardiovascular Complications in Preeclampsia through Decorin and VEGF Regulation.","authors":"Huma Quasimi, Sheema Wazib, Gausal Azam Khan, Md Iqbal Alam","doi":"10.61186/rbmb.13.3.385","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Preeclampsia (PE) is a serious multisystem disorder that ranks among the leading causes of maternal and neonatal morbidity and mortality. The condition is characterized by an angiogenic imbalance, which has adverse effects on fetal development and contributes to an increased risk of cardiovascular disease in the long term. This study aims to explore the connection between sterile inflammation mediated by HMGB1 and angiogenic imbalance in PE by examining key markers such as HMGB1, VEGF, Decorin, and TGF-β.</p><p><strong>Methods: </strong>In an animal model of PE, we measured the levels of HMGB1, VEGF, Decorin, and TGF-β in plasma, placenta, and heart tissues using ELISA. Additionally, Decorin levels were assessed through immunofluorescence in trophoblasts.</p><p><strong>Results: </strong>We found that levels of Decorin and TGF-β were significantly elevated in the plasma, placenta, and heart tissues of PE animals compared to non-pregnant and pregnant controls, whereas VEGF levels were reduced. Treatment with Glycyrrhizic acid (GA) restored the expression levels of these markers to more normalized values in the PE groups.</p><p><strong>Conclusions: </strong>Our findings indicate that HMGB1 plays a critical role in preeclampsia by mediating the upregulation of anti-angiogenic factors like Decorin and the downregulation of angiogenic factors like VEGF. This study highlights a significant correlation between HMGB1 and Decorin in driving the angiogenic imbalance that contributes to the pathophysiology of PE.</p>","PeriodicalId":45319,"journal":{"name":"Reports of Biochemistry and Molecular Biology","volume":"13 3","pages":"385-393"},"PeriodicalIF":1.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12050052/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports of Biochemistry and Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61186/rbmb.13.3.385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Preeclampsia (PE) is a serious multisystem disorder that ranks among the leading causes of maternal and neonatal morbidity and mortality. The condition is characterized by an angiogenic imbalance, which has adverse effects on fetal development and contributes to an increased risk of cardiovascular disease in the long term. This study aims to explore the connection between sterile inflammation mediated by HMGB1 and angiogenic imbalance in PE by examining key markers such as HMGB1, VEGF, Decorin, and TGF-β.
Methods: In an animal model of PE, we measured the levels of HMGB1, VEGF, Decorin, and TGF-β in plasma, placenta, and heart tissues using ELISA. Additionally, Decorin levels were assessed through immunofluorescence in trophoblasts.
Results: We found that levels of Decorin and TGF-β were significantly elevated in the plasma, placenta, and heart tissues of PE animals compared to non-pregnant and pregnant controls, whereas VEGF levels were reduced. Treatment with Glycyrrhizic acid (GA) restored the expression levels of these markers to more normalized values in the PE groups.
Conclusions: Our findings indicate that HMGB1 plays a critical role in preeclampsia by mediating the upregulation of anti-angiogenic factors like Decorin and the downregulation of angiogenic factors like VEGF. This study highlights a significant correlation between HMGB1 and Decorin in driving the angiogenic imbalance that contributes to the pathophysiology of PE.
期刊介绍:
The Reports of Biochemistry & Molecular Biology (RBMB) is the official journal of the Varastegan Institute for Medical Sciences and is dedicated to furthering international exchange of medical and biomedical science experience and opinion and a platform for worldwide dissemination. The RBMB is a medical journal that gives special emphasis to biochemical research and molecular biology studies. The Journal invites original and review articles, short communications, reports on experiments and clinical cases, and case reports containing new insights into any aspect of biochemistry and molecular biology that are not published or being considered for publication elsewhere. Publications are accepted in the form of reports of original research, brief communications, case reports, structured reviews, editorials, commentaries, views and perspectives, letters to authors, book reviews, resources, news, and event agenda.