{"title":"Unraveling the Role of Functional Amyloids and Amyloid Peptides in Disease Detection.","authors":"Priyanka Kumar, Nandini Sarkar","doi":"10.2174/0109298665368109250419175111","DOIUrl":null,"url":null,"abstract":"<p><p>Amyloid refers to a specific quaternary structure characterized by fibrillar arrangements of proteins or peptides forming cross β-sheet architectures. Initially associated with diseases like Alzheimer's, amyloid was seen predominantly as pathological. However, recent research has revealed that amyloid also plays functional roles across various biological systems, from bacteria to mammals. The cross β-sheet structure of amyloid enables the transformation of soluble proteins into insoluble fibrils, providing high stability and a robust prion-like copying mechanism. However, recent research has revealed that amyloid also plays functional roles in various biological systems, such as biofilm formation in bacteria, aiding melanin biosynthesis in humans, and supporting the formation of fungal hyphae. Understanding the dual nature of amyloid-a pathological and functional entity-offers insights into disease mechanisms and therapeutic strategies. Recognizing the distinction between pathological and functional amyloids is crucial for advancing diagnostics and treatments. This review highlights the importance of functional amyloids (FAs), particularly in disease detection, underscoring their significant biological roles and potential applications.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein and Peptide Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0109298665368109250419175111","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Amyloid refers to a specific quaternary structure characterized by fibrillar arrangements of proteins or peptides forming cross β-sheet architectures. Initially associated with diseases like Alzheimer's, amyloid was seen predominantly as pathological. However, recent research has revealed that amyloid also plays functional roles across various biological systems, from bacteria to mammals. The cross β-sheet structure of amyloid enables the transformation of soluble proteins into insoluble fibrils, providing high stability and a robust prion-like copying mechanism. However, recent research has revealed that amyloid also plays functional roles in various biological systems, such as biofilm formation in bacteria, aiding melanin biosynthesis in humans, and supporting the formation of fungal hyphae. Understanding the dual nature of amyloid-a pathological and functional entity-offers insights into disease mechanisms and therapeutic strategies. Recognizing the distinction between pathological and functional amyloids is crucial for advancing diagnostics and treatments. This review highlights the importance of functional amyloids (FAs), particularly in disease detection, underscoring their significant biological roles and potential applications.
期刊介绍:
Protein & Peptide Letters publishes letters, original research papers, mini-reviews and guest edited issues in all important aspects of protein and peptide research, including structural studies, advances in recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, and drug design. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallization and preliminary structure determination of biologically important proteins are considered only if they include significant new approaches or deal with proteins of immediate importance, and preliminary structure determinations of biologically important proteins. Purely theoretical/review papers should provide new insight into the principles of protein/peptide structure and function. Manuscripts describing computational work should include some experimental data to provide confirmation of the results of calculations.
Protein & Peptide Letters focuses on:
Structure Studies
Advances in Recombinant Expression
Drug Design
Chemical Synthesis
Function
Pharmacology
Enzymology
Conformational Analysis
Immunology
Biotechnology
Protein Engineering
Protein Folding
Sequencing
Molecular Recognition
Purification and Analysis