Yeast-Driven and Bioimpedance-Sensitive Biohybrid Soft Robots.

IF 10.5 Q1 ENGINEERING, BIOMEDICAL
Cyborg and bionic systems (Washington, D.C.) Pub Date : 2025-04-25 eCollection Date: 2025-01-01 DOI:10.34133/cbsystems.0233
MennaAllah Soliman, Frederick Forbes, Dana D Damian
{"title":"Yeast-Driven and Bioimpedance-Sensitive Biohybrid Soft Robots.","authors":"MennaAllah Soliman, Frederick Forbes, Dana D Damian","doi":"10.34133/cbsystems.0233","DOIUrl":null,"url":null,"abstract":"<p><p>Biohybrid robots integrate biological components with synthetic materials to harness the unique capabilities of living systems for robotic functions. This study focuses on leveraging yeast fermentation dynamics to enable actuation and sensing in soft robotic systems. By leveraging yeast's natural ability to produce carbon dioxide and generate pressure during fermentation, we demonstrate the feasibility of creating biohybrid robots with lifelike behavior and adaptability. Our research integrates bioimpedance sensing into track yeast behavior and metabolic dynamics in real time. We developed an adjustable single-resistor oscillator circuit by using a digital potentiometer to measure impedance frequency and model the yeast growth rate. Experimental results reveal the sensitivity of the single-resistor oscillator circuit to variations in yeast concentration and demonstrate the correlation between yeast behavior and actuation power. Furthermore, we highlight the potential of yeast-driven robots for various applications by demonstrating a yeast-driven soft limb capable of rotating 140° tested at different temperatures, an inflatable membrane actuator functioning as a tactile sensor detecting forces up to 4.5 N, a palpation probe for differentiating tissue stiffness, and a gripper capable of manipulating objects. This work lays the foundation for advancing biohybrid robotics by integrating yeast fermentation dynamics with bioimpedance sensing, enhancing the functionality of robotic systems.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"6 ","pages":"0233"},"PeriodicalIF":10.5000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12022396/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyborg and bionic systems (Washington, D.C.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/cbsystems.0233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Biohybrid robots integrate biological components with synthetic materials to harness the unique capabilities of living systems for robotic functions. This study focuses on leveraging yeast fermentation dynamics to enable actuation and sensing in soft robotic systems. By leveraging yeast's natural ability to produce carbon dioxide and generate pressure during fermentation, we demonstrate the feasibility of creating biohybrid robots with lifelike behavior and adaptability. Our research integrates bioimpedance sensing into track yeast behavior and metabolic dynamics in real time. We developed an adjustable single-resistor oscillator circuit by using a digital potentiometer to measure impedance frequency and model the yeast growth rate. Experimental results reveal the sensitivity of the single-resistor oscillator circuit to variations in yeast concentration and demonstrate the correlation between yeast behavior and actuation power. Furthermore, we highlight the potential of yeast-driven robots for various applications by demonstrating a yeast-driven soft limb capable of rotating 140° tested at different temperatures, an inflatable membrane actuator functioning as a tactile sensor detecting forces up to 4.5 N, a palpation probe for differentiating tissue stiffness, and a gripper capable of manipulating objects. This work lays the foundation for advancing biohybrid robotics by integrating yeast fermentation dynamics with bioimpedance sensing, enhancing the functionality of robotic systems.

酵母驱动和生物阻抗敏感的生物混合软机器人。
生物混合机器人将生物部件与合成材料结合起来,利用生命系统的独特能力来实现机器人的功能。本研究的重点是利用酵母发酵动力学来实现软机器人系统的驱动和传感。通过利用酵母在发酵过程中产生二氧化碳和产生压力的自然能力,我们展示了创造具有逼真行为和适应性的生物混合机器人的可行性。我们的研究将生物阻抗传感集成到实时跟踪酵母行为和代谢动力学中。我们开发了一个可调的单电阻振荡器电路,使用数字电位器来测量阻抗频率并模拟酵母的生长速率。实验结果揭示了单电阻振荡电路对酵母浓度变化的敏感性,并证明了酵母行为与驱动功率之间的相关性。此外,我们强调了酵母驱动机器人在各种应用中的潜力,展示了在不同温度下能够旋转140°的酵母驱动软肢,可作为触觉传感器检测高达4.5 N的力的充气膜致动器,用于区分组织刚度的触感探头,以及能够操纵物体的抓手。本研究将酵母发酵动力学与生物阻抗传感相结合,为推进生物混合机器人技术奠定了基础,增强了机器人系统的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信