{"title":"CrystalTac: Vision-Based Tactile Sensor Family Fabricated via Rapid Monolithic Manufacturing.","authors":"Wen Fan, Haoran Li, Dandan Zhang","doi":"10.34133/cbsystems.0231","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, vision-based tactile sensors (VBTSs) have gained popularity in robotics systems. The sensing mechanisms of most VBTSs can be categorized based on the type of tactile features they capture. Each category requires specific structural designs to convert physical contact into optical information. The complex architectures of VBTSs pose challenges for traditional manufacturing techniques in terms of design flexibility, cost-effectiveness, and quality stability. Previous research has shown that monolithic manufacturing using multimaterial 3-dimensional printing technology can address these challenges but fails to bridge the gap between the design phase and creation phase of VBTSs. Thereby, in this study, we introduce the CrystalTac family, a series of VBTSs designed with on-demand sensing mechanisms and fabricated through rapid monolithic manufacturing. Case studies on the CrystalTac family demonstrate their efficiency in targeted tasks involving tactile perception, along with impressive cost-effectiveness and design flexibility. The CrystalTac family aims to highlight the potential of rapid monolithic manufacturing techniques in VBTS development and inspire further research in tactile sensing and manipulation.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"6 ","pages":"0231"},"PeriodicalIF":10.5000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11982672/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyborg and bionic systems (Washington, D.C.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/cbsystems.0231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, vision-based tactile sensors (VBTSs) have gained popularity in robotics systems. The sensing mechanisms of most VBTSs can be categorized based on the type of tactile features they capture. Each category requires specific structural designs to convert physical contact into optical information. The complex architectures of VBTSs pose challenges for traditional manufacturing techniques in terms of design flexibility, cost-effectiveness, and quality stability. Previous research has shown that monolithic manufacturing using multimaterial 3-dimensional printing technology can address these challenges but fails to bridge the gap between the design phase and creation phase of VBTSs. Thereby, in this study, we introduce the CrystalTac family, a series of VBTSs designed with on-demand sensing mechanisms and fabricated through rapid monolithic manufacturing. Case studies on the CrystalTac family demonstrate their efficiency in targeted tasks involving tactile perception, along with impressive cost-effectiveness and design flexibility. The CrystalTac family aims to highlight the potential of rapid monolithic manufacturing techniques in VBTS development and inspire further research in tactile sensing and manipulation.