Yuhan Wang , Ningning Pan , Zhuoshuo Li , Yating Wang , Ruoqing Chen , Zhicong Fang , Minmin Pan , Hongzhuang Li , Ke Fang , Xiaorui Wu , Mengting Liu , Xinting Ge
{"title":"Developmental patterns of white matter functional networks in neonates","authors":"Yuhan Wang , Ningning Pan , Zhuoshuo Li , Yating Wang , Ruoqing Chen , Zhicong Fang , Minmin Pan , Hongzhuang Li , Ke Fang , Xiaorui Wu , Mengting Liu , Xinting Ge","doi":"10.1016/j.neuroimage.2025.121252","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, the development of neonatal brain networks has become a research focus, with traditional studies primarily emphasizing gray matter (GM) functional networks. This study systematically explores the developmental characteristics of white matter (WM) functional networks in neonates. Utilizing data from the third release of the Developing Human Connectome Project (dHCP), we analyzed resting-state functional magnetic resonance imaging (rs-fMRI) data from 730 full-term and 157 preterm neonates. We successfully identified ten large-scale WM functional networks and validated their correspondence with established WM fiber tracts using diffusion tensor imaging (DTI). We examined WM functional networks from two dimensions: network functional connectivity and spontaneous activity, incorporating four factors: preterm birth status, age, sex, and hemispheric differences. The results indicate that WM network functional connectivity significantly increases with age, with preterm infants exhibiting lower connectivity than full-term infants, whereas no significant differences were observed between sexes or hemispheres. Regarding spontaneous activity, preterm infants showed lower amplitude in the low-frequency range, whereas in the high-frequency range, their amplitude distribution was more unstable and dispersed. Additionally, certain differences in spontaneous activity were observed between hemispheres and sexes. These findings provide novel insights into the early development of neonatal brain networks and hold significant implications for clinical interventions and treatment strategies for preterm infants.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"314 ","pages":"Article 121252"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811925002551","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the development of neonatal brain networks has become a research focus, with traditional studies primarily emphasizing gray matter (GM) functional networks. This study systematically explores the developmental characteristics of white matter (WM) functional networks in neonates. Utilizing data from the third release of the Developing Human Connectome Project (dHCP), we analyzed resting-state functional magnetic resonance imaging (rs-fMRI) data from 730 full-term and 157 preterm neonates. We successfully identified ten large-scale WM functional networks and validated their correspondence with established WM fiber tracts using diffusion tensor imaging (DTI). We examined WM functional networks from two dimensions: network functional connectivity and spontaneous activity, incorporating four factors: preterm birth status, age, sex, and hemispheric differences. The results indicate that WM network functional connectivity significantly increases with age, with preterm infants exhibiting lower connectivity than full-term infants, whereas no significant differences were observed between sexes or hemispheres. Regarding spontaneous activity, preterm infants showed lower amplitude in the low-frequency range, whereas in the high-frequency range, their amplitude distribution was more unstable and dispersed. Additionally, certain differences in spontaneous activity were observed between hemispheres and sexes. These findings provide novel insights into the early development of neonatal brain networks and hold significant implications for clinical interventions and treatment strategies for preterm infants.
期刊介绍:
NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.