Qi Wang, Xinyi Wu, Mei Ren, Fanghang Zhang, Yang Zhang, Yueyang Wang, Wen Li, Zhihua Xie, Kaijie Qi, Shaoling Zhang, Katsuhiro Shiratake, Yingying Niu, Shutian Tao
{"title":"Cryptochrome-mediated blue light regulates cell lignification via PbbHLH195 activation of the PbNSC in pear fruits.","authors":"Qi Wang, Xinyi Wu, Mei Ren, Fanghang Zhang, Yang Zhang, Yueyang Wang, Wen Li, Zhihua Xie, Kaijie Qi, Shaoling Zhang, Katsuhiro Shiratake, Yingying Niu, Shutian Tao","doi":"10.1186/s43897-025-00149-z","DOIUrl":null,"url":null,"abstract":"<p><p>The presence of stone cells in pear fruit, caused by lignified secondary cell walls (SCWs), leads to a grainy texture in the fruit flesh, thereby compromising its overall quality. Lignification is influenced by various environmental signals, including light, however the underlying mechanism are poorly understood. This study reveals that SCW thickening and lignin accumulation in stone cells were regulated by a blue light signal, mediated through the activation of PbNSC by PbbHLH195. The results revealed that the stone cell formation was prompted by supplementary with blue light, with lignin accumulation linked to the upregulation of the NAC STONE CELL PROMOTING FACTOR (PbNSC). PbbHLH195 was identified as a novel molecular hub connecting lignification to blue light signal through its physical interaction with PbCRY1a. The biochemical and functional analysis indicates that PbbHLH195 contributes to stone cell lignification by activating the promoter of PbNSC. Our findings offer novel insights into the mechanisms of lignin biosynthesis in response to blue light, identifying valuable genetic targets for enhancing the fruit quality of pear.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"27"},"PeriodicalIF":10.6000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12057157/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Horticulture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43897-025-00149-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The presence of stone cells in pear fruit, caused by lignified secondary cell walls (SCWs), leads to a grainy texture in the fruit flesh, thereby compromising its overall quality. Lignification is influenced by various environmental signals, including light, however the underlying mechanism are poorly understood. This study reveals that SCW thickening and lignin accumulation in stone cells were regulated by a blue light signal, mediated through the activation of PbNSC by PbbHLH195. The results revealed that the stone cell formation was prompted by supplementary with blue light, with lignin accumulation linked to the upregulation of the NAC STONE CELL PROMOTING FACTOR (PbNSC). PbbHLH195 was identified as a novel molecular hub connecting lignification to blue light signal through its physical interaction with PbCRY1a. The biochemical and functional analysis indicates that PbbHLH195 contributes to stone cell lignification by activating the promoter of PbNSC. Our findings offer novel insights into the mechanisms of lignin biosynthesis in response to blue light, identifying valuable genetic targets for enhancing the fruit quality of pear.
期刊介绍:
Aims
Molecular Horticulture aims to publish research and review articles that significantly advance our knowledge in understanding how the horticultural crops or their parts operate mechanistically. Articles should have profound impacts not only in terms of high citation number or the like, but more importantly on the direction of the horticultural research field.
Scope
Molecular Horticulture publishes original Research Articles, Letters, and Reviews on novel discoveries on the following, but not limited to, aspects of horticultural plants (including medicinal plants):
▪ Developmental and evolutionary biology
▪ Physiology, biochemistry and cell biology
▪ Plant-microbe and plant-environment interactions
▪ Genetics and epigenetics
▪ Molecular breeding and biotechnology
▪ Secondary metabolism and synthetic biology
▪ Multi-omics dealing with data sets of genome, transcriptome, proteome, metabolome, epigenome and/or microbiome.
The journal also welcomes research articles using model plants that reveal mechanisms and/or principles readily applicable to horticultural plants, translational research articles involving application of basic knowledge (including those of model plants) to the horticultural crops, novel Methods and Resources of broad interest.
In addition, the journal publishes Editorial, News and View, and Commentary and Perspective on current, significant events and topics in global horticultural fields with international interests.