{"title":"Natural Killer Cell Membrane Isolation with Minimal Nuclear, Mitochondrial, and Cytosol Contamination.","authors":"Vaishali Chugh, Vijaya Krishna K, Vaibhav Patil, Abhay Pandit","doi":"10.1089/ten.tec.2024.0362","DOIUrl":null,"url":null,"abstract":"<p><p>Cell membrane isolation is essential for diverse biological investigations, ranging from fundamental research to advanced therapeutic applications. This study compared two methods-differential centrifugation and discontinuous sucrose density gradient ultracentrifugation-for isolating cell membranes from the human natural killer (NK) cell line (KHYG-1). The aim was to identify the method that minimizes contamination from nuclear, mitochondrial, and cytosolic components. Differential centrifugation yielded approximately 8 mg of cell membrane, whereas sucrose density gradient ultracentrifugation produced about 5 mg. Despite the lower yield, the latter method exhibited superior performance due to significantly reduced contamination. This protocol is adaptable to various cell types, offering a reliable approach for producing cell membrane-coated mimics for therapeutic use. The increasing demand for isolated cell membranes in biomedical applications highlights the importance of optimizing isolation techniques.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":"31 4","pages":"153-163"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering. Part C, Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.tec.2024.0362","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Cell membrane isolation is essential for diverse biological investigations, ranging from fundamental research to advanced therapeutic applications. This study compared two methods-differential centrifugation and discontinuous sucrose density gradient ultracentrifugation-for isolating cell membranes from the human natural killer (NK) cell line (KHYG-1). The aim was to identify the method that minimizes contamination from nuclear, mitochondrial, and cytosolic components. Differential centrifugation yielded approximately 8 mg of cell membrane, whereas sucrose density gradient ultracentrifugation produced about 5 mg. Despite the lower yield, the latter method exhibited superior performance due to significantly reduced contamination. This protocol is adaptable to various cell types, offering a reliable approach for producing cell membrane-coated mimics for therapeutic use. The increasing demand for isolated cell membranes in biomedical applications highlights the importance of optimizing isolation techniques.
期刊介绍:
Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.
Tissue Engineering Methods (Part C) presents innovative tools and assays in scaffold development, stem cells and biologically active molecules to advance the field and to support clinical translation. Part C publishes monthly.