Adam Gardi, Kazandra M Rodriguez, Thomas E Augenstein, Riann M Palmieri-Smith, Chandramouli Krishnan
{"title":"No Evidence of Hysteresis in Quadriceps or Hamstring Active Motor Evoked Potentials.","authors":"Adam Gardi, Kazandra M Rodriguez, Thomas E Augenstein, Riann M Palmieri-Smith, Chandramouli Krishnan","doi":"10.1177/09226028251330850","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundThe excitability of the corticospinal tract (<i>i.e.,</i> corticospinal excitability) is a valuable tool for assessing neurophysiology and the effectiveness of interventions in individuals with and without neurological and/or orthopaedic injuries. Corticospinal excitability is often measured with an input-output recruitment curve, which is produced by stimulating the motor cortex via transcranial magnetic stimulation (TMS) at several intensities and measuring the changes in the evoked responses. However, it is currently unclear if hysteresis in motor evoked potentials (MEPs) (<i>i.e.,</i> changes in MEP amplitude due to the order of stimulus intensities) affects the resulting measure of excitability, particularly in lower extremity muscles.ObjectiveTo evaluate whether the order of stimulus intensity (ascending, descending, randomized) affects input-output recruitment curves measured in the lower extremity muscles.MethodsRecruitment curves were produced in neurologically intact individuals by stimulating the primary motor cortex at 70% to 140% of active motor threshold in 10% increments. We examined three stimulus intensity ordering paradigms: ascending (70<math><mo>→</mo></math>140), descending (140<math><mo>→</mo></math>70), and randomized. We measured MEPs of the quadriceps and the antagonistic hamstring muscles using surface electromyography in addition to quadriceps motor evoked torque. We computed the area under the recruitment curve (AUC) of the raw and normalized motor evoked responses and used classical and Bayesian inference methods to comprehensively evaluate hysteresis in MEPs.ResultsClassical hypothesis testing revealed no significant main effects of stimulus order. Bayesian analyses also confirmed that the null model was more favored than the main effects model.ConclusionsCorticospinal excitability of the quadriceps and antagonistic hamstring muscles were not influenced by stimulus intensity order. Any of the three approaches (ascending, descending, randomized) may be used when measuring recruitment curves for the quadriceps and hamstring muscles.</p>","PeriodicalId":21130,"journal":{"name":"Restorative neurology and neuroscience","volume":" ","pages":"9226028251330850"},"PeriodicalIF":1.9000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Restorative neurology and neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09226028251330850","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
BackgroundThe excitability of the corticospinal tract (i.e., corticospinal excitability) is a valuable tool for assessing neurophysiology and the effectiveness of interventions in individuals with and without neurological and/or orthopaedic injuries. Corticospinal excitability is often measured with an input-output recruitment curve, which is produced by stimulating the motor cortex via transcranial magnetic stimulation (TMS) at several intensities and measuring the changes in the evoked responses. However, it is currently unclear if hysteresis in motor evoked potentials (MEPs) (i.e., changes in MEP amplitude due to the order of stimulus intensities) affects the resulting measure of excitability, particularly in lower extremity muscles.ObjectiveTo evaluate whether the order of stimulus intensity (ascending, descending, randomized) affects input-output recruitment curves measured in the lower extremity muscles.MethodsRecruitment curves were produced in neurologically intact individuals by stimulating the primary motor cortex at 70% to 140% of active motor threshold in 10% increments. We examined three stimulus intensity ordering paradigms: ascending (70140), descending (14070), and randomized. We measured MEPs of the quadriceps and the antagonistic hamstring muscles using surface electromyography in addition to quadriceps motor evoked torque. We computed the area under the recruitment curve (AUC) of the raw and normalized motor evoked responses and used classical and Bayesian inference methods to comprehensively evaluate hysteresis in MEPs.ResultsClassical hypothesis testing revealed no significant main effects of stimulus order. Bayesian analyses also confirmed that the null model was more favored than the main effects model.ConclusionsCorticospinal excitability of the quadriceps and antagonistic hamstring muscles were not influenced by stimulus intensity order. Any of the three approaches (ascending, descending, randomized) may be used when measuring recruitment curves for the quadriceps and hamstring muscles.
期刊介绍:
This interdisciplinary journal publishes papers relating to the plasticity and response of the nervous system to accidental or experimental injuries and their interventions, transplantation, neurodegenerative disorders and experimental strategies to improve regeneration or functional recovery and rehabilitation. Experimental and clinical research papers adopting fresh conceptual approaches are encouraged. The overriding criteria for publication are novelty, significant experimental or clinical relevance and interest to a multidisciplinary audience. Experiments on un-anesthetized animals should conform with the standards for the use of laboratory animals as established by the Institute of Laboratory Animal Resources, US National Academy of Sciences. Experiments in which paralytic agents are used must be justified. Patient identity should be concealed. All manuscripts are sent out for blind peer review to editorial board members or outside reviewers. Restorative Neurology and Neuroscience is a member of Neuroscience Peer Review Consortium.