Kareme D Alder, Mason F Carstens, Cole E Bothun, Oliver B Dilger, Ashley N Payne, Roman Thaler, Mark E Morrey, Joaquin Sanchez-Sotelo, Daniel J Berry, Amel Dudakovic, Matthew P Abdel
{"title":"An Abbreviated Rabbit Knee Model of Joint Contracture.","authors":"Kareme D Alder, Mason F Carstens, Cole E Bothun, Oliver B Dilger, Ashley N Payne, Roman Thaler, Mark E Morrey, Joaquin Sanchez-Sotelo, Daniel J Berry, Amel Dudakovic, Matthew P Abdel","doi":"10.1089/ten.tec.2025.0044","DOIUrl":null,"url":null,"abstract":"<p><p>Experimental analyses of knee joint contractures have traditionally utilized a 6-month rabbit model as the gold standard. However, this model is time-intensive and costly. The purpose of this study was to develop an abbreviated rabbit model of knee contractures and compare it to the well-established longer model. Twenty female New Zealand White rabbits were divided into two equal groups and prospectively studied to assess knee passive extension angles (PEA), contracture angles (CA), and terminal posterior capsular stiffness. Experimental knees were immobilized for either 4 weeks (<i>n</i> = 10) with an 8-week remobilization period in the abbreviated model (i.e., 3 months) or for 8 weeks (<i>n</i> = 10) with a 16-week remobilization period in the standard model (i.e., 6 months). PEAs were assessed at remobilization and several time points using differing vertical forces. At sacrifice, terminal biomechanical data were collected to assess posterior capsular stiffness. Analysis of PEAs in live animals at each torque value and time point demonstrated increased PEAs and decreased CAs in the 3-month abbreviated model as compared to the 6-month standard model. At sacrifice, biomechanical analysis demonstrated that the posterior capsules of the 3-month experimental limbs were significantly more stiff than the contralateral limb (2.4 vs. 0.05 Ncm/°, <i>p</i> < 0.0001), but significantly less stiff compared to the 6-month experimental limbs (2.4 vs. 4.7 Ncm/°, <i>p</i> < 0.0001). Our study suggests that the 6-month standard rabbit knee model of arthrofibrosis should continue to be used in the laboratory assessment of arthrofibrosis. However, the abbreviated model may be beneficial under selected experimental conditions.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":"31 4","pages":"145-152"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering. Part C, Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.tec.2025.0044","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Experimental analyses of knee joint contractures have traditionally utilized a 6-month rabbit model as the gold standard. However, this model is time-intensive and costly. The purpose of this study was to develop an abbreviated rabbit model of knee contractures and compare it to the well-established longer model. Twenty female New Zealand White rabbits were divided into two equal groups and prospectively studied to assess knee passive extension angles (PEA), contracture angles (CA), and terminal posterior capsular stiffness. Experimental knees were immobilized for either 4 weeks (n = 10) with an 8-week remobilization period in the abbreviated model (i.e., 3 months) or for 8 weeks (n = 10) with a 16-week remobilization period in the standard model (i.e., 6 months). PEAs were assessed at remobilization and several time points using differing vertical forces. At sacrifice, terminal biomechanical data were collected to assess posterior capsular stiffness. Analysis of PEAs in live animals at each torque value and time point demonstrated increased PEAs and decreased CAs in the 3-month abbreviated model as compared to the 6-month standard model. At sacrifice, biomechanical analysis demonstrated that the posterior capsules of the 3-month experimental limbs were significantly more stiff than the contralateral limb (2.4 vs. 0.05 Ncm/°, p < 0.0001), but significantly less stiff compared to the 6-month experimental limbs (2.4 vs. 4.7 Ncm/°, p < 0.0001). Our study suggests that the 6-month standard rabbit knee model of arthrofibrosis should continue to be used in the laboratory assessment of arthrofibrosis. However, the abbreviated model may be beneficial under selected experimental conditions.
期刊介绍:
Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.
Tissue Engineering Methods (Part C) presents innovative tools and assays in scaffold development, stem cells and biologically active molecules to advance the field and to support clinical translation. Part C publishes monthly.