Miriama Štiavnická, Rachel S Keegan, Elaine M Dunleavy
{"title":"Marking dad's centromeres: maintaining CENP-A in sperm.","authors":"Miriama Štiavnická, Rachel S Keegan, Elaine M Dunleavy","doi":"10.1007/s10577-025-09766-2","DOIUrl":null,"url":null,"abstract":"<p><p>During spermiogenesis, histones are removed from most genomic loci and are replaced by protamines in mature sperm nuclei. Yet, centromeres appear resistant to this process. We review the experimental evidence that the centromeric histone CENP-A is maintained in mature sperm nuclei, comparing human, bovine, mouse and fly species. We also recall how the detection of centromeres in mature sperm nuclei in the 1990's contributed to the isolation of the CENP-A protein and the eventual cloning of the human CENP-A gene. Further, based on more recent genetic studies carried out in flies and in mice, we discuss the inheritance and functional importance of paternal CENP-A and how it is complemented by maternal CENP-A to give rise to a healthy embryo. Finally, we raise some unanswered questions regarding the exclusive maintenance of CENP-A on sperm, the organisation of sperm centromeric chromatin and its importance for fertility and early embryo development.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":"33 1","pages":"8"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12031959/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chromosome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10577-025-09766-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
During spermiogenesis, histones are removed from most genomic loci and are replaced by protamines in mature sperm nuclei. Yet, centromeres appear resistant to this process. We review the experimental evidence that the centromeric histone CENP-A is maintained in mature sperm nuclei, comparing human, bovine, mouse and fly species. We also recall how the detection of centromeres in mature sperm nuclei in the 1990's contributed to the isolation of the CENP-A protein and the eventual cloning of the human CENP-A gene. Further, based on more recent genetic studies carried out in flies and in mice, we discuss the inheritance and functional importance of paternal CENP-A and how it is complemented by maternal CENP-A to give rise to a healthy embryo. Finally, we raise some unanswered questions regarding the exclusive maintenance of CENP-A on sperm, the organisation of sperm centromeric chromatin and its importance for fertility and early embryo development.
期刊介绍:
Chromosome Research publishes manuscripts from work based on all organisms and encourages submissions in the following areas including, but not limited, to:
· Chromosomes and their linkage to diseases;
· Chromosome organization within the nucleus;
· Chromatin biology (transcription, non-coding RNA, etc);
· Chromosome structure, function and mechanics;
· Chromosome and DNA repair;
· Epigenetic chromosomal functions (centromeres, telomeres, replication, imprinting,
dosage compensation, sex determination, chromosome remodeling);
· Architectural/epigenomic organization of the genome;
· Functional annotation of the genome;
· Functional and comparative genomics in plants and animals;
· Karyology studies that help resolve difficult taxonomic problems or that provide
clues to fundamental mechanisms of genome and karyotype evolution in plants and animals;
· Mitosis and Meiosis;
· Cancer cytogenomics.