3-Oxo-22α-Hydroxy-Rotundic Acid Alleviates Hyperlipidemia in Mice by Modulating Lipid Metabolism Through the AMPK-SREBP-1c-PPARα Pathway.

IF 6.1 2区 医学 Q1 CHEMISTRY, MEDICINAL
Mengjia Sun, Pinfei Zhong, Guishan Xu, Wei Zeng, Min Yu, Jiamin Cao, Jing Jin, Jie Chen, Zhongxiang Zhao
{"title":"3-Oxo-22α-Hydroxy-Rotundic Acid Alleviates Hyperlipidemia in Mice by Modulating Lipid Metabolism Through the AMPK-SREBP-1c-PPARα Pathway.","authors":"Mengjia Sun, Pinfei Zhong, Guishan Xu, Wei Zeng, Min Yu, Jiamin Cao, Jing Jin, Jie Chen, Zhongxiang Zhao","doi":"10.1002/ptr.8518","DOIUrl":null,"url":null,"abstract":"<p><p>3-Oxo-22α-hydroxy-rotundic acid (ITP3) demonstrated notable hypolipidemic activity. However, the molecular mechanism of its hypolipidemic activity has not been elucidated. The present study aimed to evaluate its lipid-lowering efficacy using in vivo and in vitro hyperlipidemia models and to further elucidate its potential mechanism of action in hyperlipidemia. Endophytic fungi in plants of the genus Ilex were utilized for microbial transformation of rotundic acid (RA) to generate an adequate quantity of ITP3. Free fatty acid (FFA) treatment of HepG2 cells and C57BL/6J mice was used to evaluate the hypolipidemic effects of ITP3 in vivo and in vitro. A metabolomics approach combined with Western blot analysis was used to reveal the potential mechanism of the anti-hyperlipidemia of ITP3. The results showed that ITP3 exhibited good lipid-lowering activity in vivo and in vitro models of hyperlipidemia. In addition, metabolomics analysis revealed significant changes in serum and intracellular metabolite lipid levels, which were restored by ITP3. Mechanistically, ITP3 can inhibit lipid synthesis and activate lipid oxidation via the AMPK-SREBP-1c-PPARα pathway, thereby ameliorating lipid metabolism disorders. ITP3 exhibits a promising lipid-lowering effect via the AMPK-SREBP-1c-PPARα pathway, thereby improving lipid metabolism. This work highlights ITP3 as a potential phytochemical candidate for the treatment of hyperlipidemia.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytotherapy Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ptr.8518","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

3-Oxo-22α-hydroxy-rotundic acid (ITP3) demonstrated notable hypolipidemic activity. However, the molecular mechanism of its hypolipidemic activity has not been elucidated. The present study aimed to evaluate its lipid-lowering efficacy using in vivo and in vitro hyperlipidemia models and to further elucidate its potential mechanism of action in hyperlipidemia. Endophytic fungi in plants of the genus Ilex were utilized for microbial transformation of rotundic acid (RA) to generate an adequate quantity of ITP3. Free fatty acid (FFA) treatment of HepG2 cells and C57BL/6J mice was used to evaluate the hypolipidemic effects of ITP3 in vivo and in vitro. A metabolomics approach combined with Western blot analysis was used to reveal the potential mechanism of the anti-hyperlipidemia of ITP3. The results showed that ITP3 exhibited good lipid-lowering activity in vivo and in vitro models of hyperlipidemia. In addition, metabolomics analysis revealed significant changes in serum and intracellular metabolite lipid levels, which were restored by ITP3. Mechanistically, ITP3 can inhibit lipid synthesis and activate lipid oxidation via the AMPK-SREBP-1c-PPARα pathway, thereby ameliorating lipid metabolism disorders. ITP3 exhibits a promising lipid-lowering effect via the AMPK-SREBP-1c-PPARα pathway, thereby improving lipid metabolism. This work highlights ITP3 as a potential phytochemical candidate for the treatment of hyperlipidemia.

3- oxo -22α-羟基轮状酸通过AMPK-SREBP-1c-PPARα途径调节脂质代谢减轻小鼠高脂血症
3-氧基-22α-羟基-圆戊酸(ITP3)具有显著的降血脂活性。然而,其降血脂活性的分子机制尚未阐明。本研究旨在通过体内和体外高脂血症模型评价其降脂效果,并进一步阐明其治疗高脂血症的潜在作用机制。利用冬青属植物内生真菌对圆己酸(RA)进行微生物转化,生成足够数量的ITP3。采用游离脂肪酸(FFA)处理HepG2细胞和C57BL/6J小鼠,评价ITP3在体内和体外的降血脂作用。采用代谢组学方法结合Western blot分析,揭示ITP3抗高脂血症的潜在机制。结果表明,ITP3在体内和体外高脂血症模型中均表现出良好的降脂活性。此外,代谢组学分析显示,血清和细胞内代谢物脂质水平发生了显著变化,ITP3恢复了这些变化。机制上,ITP3通过AMPK-SREBP-1c-PPARα途径抑制脂质合成,激活脂质氧化,从而改善脂质代谢紊乱。ITP3通过AMPK-SREBP-1c-PPARα途径表现出良好的降脂作用,从而改善脂质代谢。这项工作强调了ITP3作为治疗高脂血症的潜在植物化学候选物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Phytotherapy Research
Phytotherapy Research 医学-药学
CiteScore
12.80
自引率
5.60%
发文量
325
审稿时长
2.6 months
期刊介绍: Phytotherapy Research is an internationally recognized pharmacological journal that serves as a trailblazing resource for biochemists, pharmacologists, and toxicologists. We strive to disseminate groundbreaking research on medicinal plants, pushing the boundaries of knowledge and understanding in this field. Our primary focus areas encompass pharmacology, toxicology, and the clinical applications of herbs and natural products in medicine. We actively encourage submissions on the effects of commonly consumed food ingredients and standardized plant extracts. We welcome a range of contributions including original research papers, review articles, and letters. By providing a platform for the latest developments and discoveries in phytotherapy, we aim to support the advancement of scientific knowledge and contribute to the improvement of modern medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信