{"title":"Synthetic generation of cardiac tissue motion from surface electrocardiograms.","authors":"Aditya Radhakrishnan, Naveena Yanamala, Ankush Jamthikar, Yanting Wang, Sasha-Ann East, Yasmin Hamirani, Kameswari Maganti, Partho P Sengupta","doi":"10.1038/s44161-025-00629-x","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiac tissue motion is a sensitive biomarker for detecting early myocardial damage. Here, we show the similarity, interpretability and diagnostic accuracy of synthetic tissue Doppler imaging (TDI) waveforms generated from surface electrocardiograms (ECGs). Prospectively collected ECG and TDI data were cross-matched as 9,144 lateral and 8,722 septal TDI-ECG pairs (463 patients) for generating synthetic TDI across every 1% interval of the cardiac cycle. External validation using 816 lateral and 869 septal TDI-ECG pairs (314 patients) demonstrated strong correlation (repeated-measures r = 0.90, P < 0.0001), cosine similarity (0.89, P < 0.0001) and no differences during a randomized visual Turing test. Synthetic TDI correlated with clinical parameters (585 patients) and detected diastolic and systolic dysfunction with an area under the curve of 0.80 and 0.81, respectively. Furthermore, synthetic TDI systolic and early diastolic measurements generated from an external ECG dataset (233,647 patients) were associated with all-cause mortality during both sinus rhythm and atrial fibrillation, underscoring their potential for personalized cardiac care.</p>","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 4","pages":"445-457"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cardiovascular research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44161-025-00629-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiac tissue motion is a sensitive biomarker for detecting early myocardial damage. Here, we show the similarity, interpretability and diagnostic accuracy of synthetic tissue Doppler imaging (TDI) waveforms generated from surface electrocardiograms (ECGs). Prospectively collected ECG and TDI data were cross-matched as 9,144 lateral and 8,722 septal TDI-ECG pairs (463 patients) for generating synthetic TDI across every 1% interval of the cardiac cycle. External validation using 816 lateral and 869 septal TDI-ECG pairs (314 patients) demonstrated strong correlation (repeated-measures r = 0.90, P < 0.0001), cosine similarity (0.89, P < 0.0001) and no differences during a randomized visual Turing test. Synthetic TDI correlated with clinical parameters (585 patients) and detected diastolic and systolic dysfunction with an area under the curve of 0.80 and 0.81, respectively. Furthermore, synthetic TDI systolic and early diastolic measurements generated from an external ECG dataset (233,647 patients) were associated with all-cause mortality during both sinus rhythm and atrial fibrillation, underscoring their potential for personalized cardiac care.
心肌组织运动是检测早期心肌损伤的敏感生物标志物。在这里,我们展示了由表面心电图(ECGs)产生的合成组织多普勒成像(TDI)波形的相似性、可解释性和诊断准确性。前瞻性收集的心电图和TDI数据交叉匹配为9144侧位和8722室间隔TDI-ECG对(463例患者),以产生每1%心脏周期间隔的合成TDI。外部验证使用816对侧位和869对中隔TDI-ECG(314例)显示强相关性(重复测量r = 0.90, P