Thales Alves Campelo, Pedro Filho Noronha Souza, Daiane Maria Silva Brito, Cristiane Cunha Frota, Paulo Renato Zuquim Antas
{"title":"Development of a Peptide-Based Multiepitope Vaccine from the SARS-CoV-2 Spike Protein for Targeted Immune Response Against COVID-19.","authors":"Thales Alves Campelo, Pedro Filho Noronha Souza, Daiane Maria Silva Brito, Cristiane Cunha Frota, Paulo Renato Zuquim Antas","doi":"10.2174/0109298665364226250328084245","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Since the Coronavirus Disease (COVID-19) became a pandemic in late 2019, vaccination remains the primary approach to combating the virus. Nevertheless, the emergence of new variants poses challenges to vaccine efficacy. This study aimed to identify targets within the SARS-CoV-2 spike (S) protein to detect T-cell responses to the five variants of concern from SARS-CoV-2: Alpha, Beta, Delta, Gamma, and Omicron.</p><p><strong>Methods: </strong>Here was employed immunoinformatics tools to develop a peptide-based vaccine targeting the spike protein of SARS-CoV-2 and its major variants, including Alpha, Beta, Delta, Gamma, and Omicron. The peptides were screened for antigenicity, toxicity, allergenicity, and physicochemical properties to ensure their safety and efficacy.</p><p><strong>Results: </strong>The potential T-cell epitopes with high immunogenicity and IFN-γ induction, are essential for a robust immune response by a comprehensive computational analysis. Population coverage analysis revealed significant coverage across diverse geographical regions, with significant efficacy in areas heavily impacted by the pandemic. Molecular docking simulations revealed strong interactions between the selected peptides and major histocompatibility complex class I (MHC-I) molecules, indicating their potential as vaccine candidates.</p><p><strong>Conclusion: </strong>Our study provides a systematic approach to the rational design of a peptide-based vaccine against COVID-19, providing insights for further experimental validation and development of effective vaccines.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein and Peptide Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0109298665364226250328084245","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Since the Coronavirus Disease (COVID-19) became a pandemic in late 2019, vaccination remains the primary approach to combating the virus. Nevertheless, the emergence of new variants poses challenges to vaccine efficacy. This study aimed to identify targets within the SARS-CoV-2 spike (S) protein to detect T-cell responses to the five variants of concern from SARS-CoV-2: Alpha, Beta, Delta, Gamma, and Omicron.
Methods: Here was employed immunoinformatics tools to develop a peptide-based vaccine targeting the spike protein of SARS-CoV-2 and its major variants, including Alpha, Beta, Delta, Gamma, and Omicron. The peptides were screened for antigenicity, toxicity, allergenicity, and physicochemical properties to ensure their safety and efficacy.
Results: The potential T-cell epitopes with high immunogenicity and IFN-γ induction, are essential for a robust immune response by a comprehensive computational analysis. Population coverage analysis revealed significant coverage across diverse geographical regions, with significant efficacy in areas heavily impacted by the pandemic. Molecular docking simulations revealed strong interactions between the selected peptides and major histocompatibility complex class I (MHC-I) molecules, indicating their potential as vaccine candidates.
Conclusion: Our study provides a systematic approach to the rational design of a peptide-based vaccine against COVID-19, providing insights for further experimental validation and development of effective vaccines.
期刊介绍:
Protein & Peptide Letters publishes letters, original research papers, mini-reviews and guest edited issues in all important aspects of protein and peptide research, including structural studies, advances in recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, and drug design. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallization and preliminary structure determination of biologically important proteins are considered only if they include significant new approaches or deal with proteins of immediate importance, and preliminary structure determinations of biologically important proteins. Purely theoretical/review papers should provide new insight into the principles of protein/peptide structure and function. Manuscripts describing computational work should include some experimental data to provide confirmation of the results of calculations.
Protein & Peptide Letters focuses on:
Structure Studies
Advances in Recombinant Expression
Drug Design
Chemical Synthesis
Function
Pharmacology
Enzymology
Conformational Analysis
Immunology
Biotechnology
Protein Engineering
Protein Folding
Sequencing
Molecular Recognition
Purification and Analysis